Batool Alharbi

Batool Alharbi

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

Mushakkal: Detecting Arabic Clickbait Using CNN with Various Optimizers(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Clickbait Detection Arabic Dataset Arabic Clickbait Detection deep learning Optimizers CNN

حوزه‌های تخصصی:
تعداد بازدید : ۶ تعداد دانلود : ۳
The term "clickbait" refers to content specifically designed to capture readers' attention, often through misleading headlines, leading to frustration among social media users. In this study, titled "Mushakkal," which translates to "variety" in Arabic, we utilized a Convolutional Neural Network (CNN)—a deep learning approach—to detect clickbait within an Arabic dataset. We compared three optimizers: RMSprop, Adam, and Adadelta, evaluating various parameter settings to determine the most effective combination for detecting clickbait in Arabic content. Our findings revealed that the CNN model performed best when both pre-processing and Word2Vec techniques were applied. The Adam optimizer outperformed the others, achieving a Macro-F1 score of 77%. The RMSprop optimizer closely followed, attaining a Macro-F1 score of 76%. In contrast, Adadelta proved to be the least effective for classifying Arabic text.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان