مه سیما کاظمی موحد

مه سیما کاظمی موحد

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Tehran Stock Exchange, Stocks Price Prediction, Using Wisdom of Crowd(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Wisdom of Crowd Stock Price Prediction Long Short-Term Memory LSTM

حوزه های تخصصی:
تعداد بازدید : ۱۴۹ تعداد دانلود : ۱۰۴
Two predominant methods for analyzing financial markets have been technical and fundamental analysis. However, the emergence of the Internet has altered the trading landscape. The availability of Internet and social media access plays a moderating role in information asymmetry, resulting in investors making informed decisions. Social media has turned into a source of information for investors. Through diverse communication channels on social media, investors articulate their perspectives on whether to buy or sell a stock. According to Surowiecki, the collective opinions gathered through social media frequently offer better predictions than individual opinions, a phenomenon referred to as the Wisdom of the Crowd. The wisdom of the crowd stands as an essential measure within social networks, with its potential to reduce errors and lessen information-gathering costs. In this study, we tried to evaluate the wisdom of the crowd's potential to improve stock price prediction accuracy. So, we developed a prediction model by Long Short-Term Memory based on the wisdom of the crowd. Users’ opinions in Persian about the Tehran Stock Exchange (TSE) stocks were collected from SAHMETO for eight months. The Support Vector Machine classified them into buy, sell, and neutral classes. During the research period, people mentioned 823 stocks, and 52 stocks with over 100 signals were chosen. The results of the study show that although the model presented has achieved an acceptable level of accuracy, correlations between the actual and predicted values exceeded 90%. The accuracy metrics of the proposed model compared to the base model were not improved.
۲.

The Wisdom of Crowds and Stock Price Prediction(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Wisdom of Crowd Stock Price Prediction Long Short-Term Memory LSTM

حوزه های تخصصی:
تعداد بازدید : ۳۳ تعداد دانلود : ۲۷
Technical and fundamental analysis are the two principal methods for studying financial markets. However, access to internet and social media helps investors make better decisions. Social media has turned into a source of information for investors. Surowiecki (2005) found social media can predict better than individuals, known as the Wisdom of the Crowd. In this study, we tried to evaluate the wisdom of the crowd’s potential to improve stock price prediction accuracy. So, we developed a prediction model by Long Short-Term Memory based on the wisdom of the crowd. Persian users' opinions on Tehran Stock Exchange stocks were gathered for 8 months and classified as buying, sell, or neutral. During the research period, people mentioned 823 stocks and 52 stocks, which had over 100 recommendations, were chosen. Prediction model accuracy was increased for 19 stocks. While, for 33 stocks were not more accurate with the wisdom of the crowds and social media features. It is important to note that investors apply critical thinking. The wisdom of the crowd can be one input to the decision-making process, along with other related factors. The wisdom of the crowd provides an opportunity to access vast and diverse information. Getting opinions from various people can provide valuable insights into economics and investment preferences. The wisdom of the crowd can help reveal the flow of money. The combination of the wisdom of the crowd, fundamental, and technical analysis can be a useful tool for traders in detecting capital flow and profitable opportunities.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان