سیما شیخ بگلو

سیما شیخ بگلو

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با روش های شبکه عصبی مصنوعی و مدل فولمر(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ورشکستگی پیش بینی مدل شبکه عصبی مصنوعی مدل فولمر بورس اوراق بهادار

حوزه های تخصصی:
تعداد بازدید : ۲۳۷ تعداد دانلود : ۲۴۰
هدف: درماندگی مالی و ورشکستگی، هزینه های زیادی داشته و به اقتصاد کشورها صدمه وارد می کند و پیش بینی آن جهت جلوگیری از ورشکستگی کمک شایان توجهی می کند. هدف پژوهش پیش بینی ورشکستگی و سودآوری شرکت ها جهت ارزیابی عملکرد و وضعیت مالی با استفاده از رگرسیون لجستیک و نسبت های مالی بامدل های شبکه عصبی مصنوعی و فولمر براساس دوره زمانی 1391 الی 1397 برای 132 شرکت بورس هست.  روش: برای برازش مدل فولمر از نرم افزار EViews و برای برازش مدل شبکه عصبی از نرم افزار Spss26 استفاده شده است. شاخص های استفاده شده در مدل ها شامل نسبت بدهی به حقوق صاحبان سهام، سود قبل از بهره و مالیات، جمع بدهی ها به مجموع دارایی ها، حساب های دریافتنی به فروش، سود خالص بر دارایی، بدهی بلندمدت به دارایی، سرمایه در گردش، سود خالص به فروش هستند.  یافته ها: با استفاده از نتایج و مدل های ارائه شده در پژوهش می توان از مبتلا شدن شرکت ها به بحران مالی، ورشکستگی و همچنین پیامدهای آن، به طور مناسبی جلوگیری کرد. البته توجه این نکته نیز ضروری است که پس از پیش بینی می بایستی به ریشه یابی مساله و پیگیری علل پرداخته شود. نتیجه گیری: نتایج پژوهش نشان داد میزان قدرت و دقت پیش بینی ورشکستگی مدل شبکه عصبی مصنوعی در مقایسه با مدل فولمر از دقت بالاتری برخوردار است و همچنین حساب های دریافتنی بر فروش بیشترین و نسبت بدهی به حقوق صاحبان سهام کمترین نسبت های مالی مؤثر بر ورشکستگی در مدل شبکه عصبی مصنوعی هست.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان