محمدحسن عدالت

محمدحسن عدالت

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

بهبود دقت پیش بینی فرآیندها در مدیریت فرآیندهای کسبوکار با به کارگیری معماری LSTM(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدیریت فرآیند‌ها مدل پیش بینی یادگیری ماشین معماری LSTM

حوزه های تخصصی:
تعداد بازدید : ۴۲۸ تعداد دانلود : ۶۳۱۲۹
پیشبینی رفتار فرآیندهای سازمانی، نقش مهمی در مدیریت فرآیندهای کسبوکار ایفا میکند. این مهم با توسعه بهکارگیری الگوریتمهای یادگیری ماشین در جنبههای مختلف آیندهپژوهی افقهای نوینی در برابر پیشبینی رویدادها و فرآیندها در فضای کسبوکار گشوده است. یکی از روشهای یادگیری ماشین، به کارگیری الگوریتمهای یادگیری عمیق بهعنوان شاخهای از شبکههای عصبی است که توانسته دقت پیشبینی را به میزان زیادی افزایش دهد؛ ازاینرو در پژوهش حاضر از معماری LSTM (حافظه طولانی کوتاهمدت) شبکه عصبی برای پیشبینی فرآیندهای کسبوکار استفاده شده است. برای انجام آزمایش، الگوریتم LSTM بر روی مجموعه داده BPI2012 و BPI2017 اعمال شد. نتایج حاصل از ساخت 300 مدل پیشبینی نشان داد که در مجموعه داده BPI2017 از مجموع آزمایشهای انجامشده بیشترین دقت 907/0 است که این مقدار دقت از مقادیر دقت بهدستآمده در پژوهشهای مشابه بالاتر است. این دقت با اجرای الگوریتم LSTM با معماری یکلایه و مدل دادهبزرگ و بدون بازخورد بهدست آمده است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان