بازشناسی حالات هیجانی با استفاده از شبکه عصبی کانولوشنال فازی مبتنی بر الکتروانسفالوگرافی در باندهای مختلف(مقاله علمی وزارت علوم)
مقدمه: احساسات پدیده های متغیر با زمانی هستند که به عنوان پاسخی به محرک ها ایجاد می شوند. در راستای تشخیص احساس به صورت پیوسته می توان از پاسخ سیگنال های مغزی و حالت های چهره به محرک ویدیویی استفاده کرد. به این صورت که مجموعه ای از فیلم های محرک برای بینندگان به نمایش گذاشته می شود و همزمان سیگنال های مغزی و حالت های چهره آنها به طور پیوسته ضبط می گردد و سطح ظرفیت آنها (احساسات منفی تا مثبت) ثبت می شود. روش کار: هدف از این پژوهش، شناخت احساسات انسانی با استفاده از تحلیل سیگنال های الکتروانسفالوگرافی بود. در این مطالعه، برای تشخیص احساسات با استفاده از شبکه عصبی کانولوشنال فازی که ویژگی های بهینه و موثر را خود از سیگنال الکتروانسفالوگرافی انتخاب می کند جهت تشخیص و بازشناسی حالات هیجانی افراد مختلف ارائه می شود. در روش پیشنهادی ابتدا سیگنال الکتروانسفالوگرافی به باندهای مختلف آلفا، بتا و گاما تجزیه شده و سپس عمل تشخیص هوشمند انجام خواهد شد. یافته ها: نتایج آزمایشات نشان می دهد که حالت آرامش و خستگی در باند آلفا بهتر و به ترتیب با دقت 2/94 درصد و 8/78 درصد بازشناسی می شود. در باند گاما شادی بهتر و با دقت 2/92 درصد شناسایی می شود و در نهایت در باند بتا، ترس با دقت 3/92 درصد بازشناسی خواهد شد. نتیجه گیری: دیده می شود که مدل پیشنهادی با استفاده از شبکه عصبی کانولوشنال از دقت بالایی در بازشناسی احساسات برخوردار است همچنین استفاده از منطق فازی در روش پیشنهادی دقت بازشناسی را در کلیه باندها بالا برده است.