طبقه بندی مشتریان بانک صادرات براساس ارزش مشتری با استفاده از درخت تصمیم(مقاله علمی وزارت علوم)
حوزههای تخصصی:
با توجه به اینکه امروزه کسب رضایت مشتری در محیط تجاری اهمیت زیادی پیدا کرده است ، بسیاری از شرکت ها به منظور افزایش سود و رضایت مشتری بر روی ارزش مشتری تمرکز دارند. مدیریت ارتباط با مشتری 3(CRM) ابزار بالا بردن ارتباط مشتری به عنوان اصل رقابت در شرکت ها ظهور پیدا کرده است. ساختار موفق CRM در شرکت ها از شناسایی ارزش درست مشتری شروع می شود، زیرا ارزش مشتری اطلاعات مهمی را به منظور گسترش هدف و مدیریت فراهم می کند. تکنیک هایی مثل داده کاوی سبب شده است که مدیریت ارتباط با مشتری در حوزه جدید رقابت پیشرفت کند به طوری که شرکت ها بتوانند در رقابت تجاری سود داشته باشند. از طریق داده کاوی -کشف دانش پنهان از پایگاه داده- سازمان ها می توانند مشتری ارزشمندشان را بشناسند و رفتار آینده آنها را پیش بینی و تصمیمات مفید و دانش محور را اتخاذ کنند. هدف از انجام این تحقیق بدست آوردن معیار های موثر در انتخاب مشتری ارزشمند است که بتوان مشتریان را براساس ویژگی های جمعیت شناختی شان و سایر متغیرهای مربوط به معاملات به طبقات سود خیلی کم، کم سود ، سودبالا و سود خیلی بالا طبقه بندی کرد. در این تحقیق تاثیر ویژگی های جمعیت شناختی افراد از جمله سن ، تحصیلات و شغل افراد همچنین تاثیر درجه شعبه، مکان شعبه بانک و تعداد تراکنش افراد برروی ارزش مشتری بررسی می شود. متغیر وابسته در این تحقیق مقدار ارزش مشتری است که به چهار طبقه دسته بندی شده است. جامعه آماری در این تحقیق مشتریان دارای حساب جاری فعال نزد بانک صادرات ایران در شهر تبریز است و مشتریانی را در نظر گرفتیم که حداقل یک سال سابقه فعالیت بانکی نزد بانک صادرات دارند. برای بررسی هدف موردنظر، درخت تصمیم CHAID یکی از الگوریتم های داده کاوی مورد استفاده قرار گرفت. نتایج نشان داد متغیرهای سن، تحصیلات مشتری و درجه شعبه بانک تاثیر معنی داری بر ارزش مشتری ندارند. تعداد تراکنش مشتری با بانک موثرترین ویژگی مشتری در تشخیص طبقه مشتری می باشد.