آرشیو

آرشیو شماره‌ها:
۴۷

چکیده

نقوش هندسی در هنر اسلامی و جنبه ریاضی آن یکی از موضوع های مورد علاقه پژوهشگران این حوزه بوده است. افرادی مانند تونی لی با دست نوشته های خود در سال ۱۹۶۷ گام مهمی در این مسیر برداشته و تاکنون ادامه یافته است. این مقاله با تکیه بر نظریه های ریاضی لی، به بررسی رابطه بین شمسه های ناهمگون و واگیره های متناسب می پردازد. لی با فرمولی ریاضی ارتباط بین تعداد رئوس شمسه ها (M, N) و پارامترهای تقسیم شعاع ها (p, q) را بیان می کند. این رابطه امکان ترسیم نقوش ترکیبی با شمسه های متفاوت (مانند ۸-۱۶، ۹-۱۲، یا ۱۰-۱۰) را فراهم می کند. بااین حال، پژوهش حاضر نشان می دهد که تحلیل صرفاً ریاضی برای ایجاد الگوهای جاپرکن (تکرارپذیر) کافی نیست و تطابق با گروه های تقارنی ۱۷گانه ضروری است. با استفاده از روش چندضلعی در لبه (PIC) و نرم افزار اتوکد ، نقوشی مانند گره های ترکیبی هشت-دوازده و نه-دوازده ترسیم شده و مشکلات مرتبط با تکثیر آن ها درزمینه های مختلف (مربع، مستطیل، شش ضلعی) بررسی گردید. نتایج ترسیم گره های با رابطه ریاضی مشابه نشان می دهند که هر شمسه ناهمگون به گروه تقارنی خاصی نیاز دارد و نمی توان از منطق یکسانِ تقارنیِ گره های همگون (مانند گره ده) برای تمام ترکیبات استفاده کرد. درنهایت، این پژوهش تأکید می کند که طراحی نقوش ناهمگون نه تنها به فرمول های ریاضی، بلکه به درک عمیق از تقارن، زمینه تکرارپذیر، و سازگاری هندسی شمسه ها وابسته است.

Investigation and drawing of geometric patterns with heterogeneous rosettes based on Tony Lee's mathematical theories

Geometric patterns in Islamic art and their mathematical aspects have been a subject of keen interest for researchers in this field. Individuals such as Tony Lee took significant strides in this direction with their manuscripts in 1967, and this work has continued to the present day. Composite geometric patterns with heterogeneous rosettes are a type of geometric design observed in historical sources such as the treatise Risāla fi Tadākhul al- Ashkāl al- Mutashābiha wa al-Muwāfaqa (On the Interlocking of Similar and Complementary Shapes) from the 9th century Hijri, as well as in historical structures across the Islamic world. These patterns have consistently captivated traditional artisans and contemporary researchers due to the diversity of rosettes and their geometric complexities. In this article, we aim to explore the mathematical relationship between two heterogeneous rosettes, as articulated by Tony Lee, and apply this understanding to the drawing of geometric patterns. To render these patterns, the polygonal-in-contact (PIC) edge method has been employed. This study reveals that implementing heterogeneous patterns—despite their mathematical compatibility for adjacency—requires distinct contextual frameworks for each, as they are inherently dissimilar. Furthermore, by analyzing the symmetry groups of geometric patterns, a field explored by mathematicians since 1977, the requisite symmetry group for knots with heterogeneous rosettes has been identified. The research demonstrates that mathematical analysis alone is insufficient to establish the similarity of these patterns; instead, differences in the required symmetry groups for rosettes become apparent through their practical illustration. In examining the drawing of interlace patterns (gereh) with heterogeneous rosettes, we demonstrated that a single symmetry logic applicable to ten-fold patterns cannot be generalized to other configurations. Instead, three types of symmetry frameworks—square, rectangular, and triangular—are required for rendering rosettes. For composite eight- and twelve-fold patterns, a quarter-square framework can be constructed by reflecting a right-angled triangle, mirroring the methodology used in ten-fold patterns. However, this logic does not extend to other composite patterns. For instance, (9-12) and (18-6) knots necessitate triangular symmetry frameworks, while (14-7) and (18-8) knots require adjustments to the background repetition and rosette positioning relative to one another. Additionally, similar to eight- and twelve-fold patterns, these rosettes can be re-rendered in symmetry frameworks with diverse configurations. This study investigates the mathematical relationship between heterogeneous rosettes and proportional symmetry frameworks in Islamic geometric patterns, grounded in Tony Lee’s theories. Key findings reveal a specific mathematical correlation between the number of rosette vertices (m,n) and radial division parameters (p,q), expressed by the formula : (1/2 =q/n + p/m )This formula enables the proportional design of heterogeneous rosettes while preserving geometric harmony. However, practical implementation demands alignment with the 17 crystallographic symmetry groups (e.g., p6m, p4m). Our work highlights that rendering patterns via mathematical logic within radial grid infrastructures (the standard method) requires modifications to rosette placement, background elements, and auxiliary motifs to achieve space-filling configurations. This principle also applies to patterns incorporating more than two rosettes.

تبلیغات