آرشیو

آرشیو شماره‌ها:
۲۰

چکیده

هدف: این پژوهش به بررسی پدیده دیپ فیک به عنوان یکی از پیامدهای فناوری های پیشرفته هوش مصنوعی، یادگیری ماشین و یادگیری عمیق در دهه اخیر می پردازد. هدف این تحقیق، تحلیل روش های مختلف مقابله با محتوای جعلی و بررسی اثرات اجتماعی و قانونی آن ها است.روش شناسی پژوهش: این مطالعه به بررسی چهار دسته از روش های مقابله با دیپ فیک شامل روش های مبتنی بر یادگیری عمیق، یادگیری ماشین کلاسیک، روش های آماری و بلاک چین می پردازد. همچنین، عملکرد این روش ها در شناسایی دیپ فیک ها بر اساس مجموعه داده های مختلف مورد ارزیابی قرار می گیرد.یافته ها: نتایج نشان می دهند که روش های مبتنی بر یادگیری عمیق در شناسایی دیپ فیک ها کارایی بیشتری دارند. همچنین، این تحقیق به تحلیل جنبه های مختلف دیپ فیک از منظر رسانه ها، جامعه، تولید و بازنمایی رسانه ها، مخاطبان، جنسیت، قانون و سیاست می پردازد و نشان می دهد که جامعه در مقابله با دیپ فیک ها آماده نیست.اصالت/ارزش افزوده علمی: این پژوهش با بررسی جامع و تطبیقی روش های مختلف شناسایی دیپ فیک، به ارزشمندی و اصالت خود در زمینه ارایه راهکارهای موثر و تحلیل ابعاد اجتماعی و قانونی این پدیده می افزاید. نتایج این مطالعه می تواند به سیاست گذاران و محققان در تدوین راهبردهای مناسب برای مقابله با دیپ فیک کمک کند.

Deepfake detection models and methods in artificial intelligence and insights from media and social culture perspective

Purpose: This study explores the phenomenon of deepfakes as a consequence of rapid advancements in artificial intelligence, machine learning, and deep learning technologies over the past decade. The primary objective is to analyze various methods for detecting deepfakes and examine their social and legal implications.Methodology: The research categorizes and evaluates four types of deepfake detection methods: deep learning-based, classical machine learning-based, statistical, and blockchain-based approaches. It also assesses the performance of these methods on different datasets.Findings: The findings indicate that deep learning-based methods are more effective in detecting deepfakes compared to other approaches. Furthermore, the study analyzes the impact of deepfakes from multiple perspectives, including media and society, media production, representation, dissemination, audience, gender, law, and politics. The results reveal that society is currently unprepared to effectively combat deepfakes, due to a combination of technological, educational, and regulatory shortcomings.Originality/Value: This research provides a comprehensive and comparative analysis of deepfake detection methods, offering valuable insights for policymakers and researchers. The study highlights the urgent need for effective strategies to address the rapidly evolving challenges posed by deepfakes in both social and legal contexts.

تبلیغات