مطالب مرتبط با کلیدواژه

ELECTRE TRI


۱.

A New Credit Risk System Using Hybrid ELECTRE TRI and NSGA-II Methods(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ELECTRE TRI NSGA-ΙΙ Credit risk NRGA

حوزه‌های تخصصی:
تعداد بازدید : ۴۰۷ تعداد دانلود : ۲۰۳
ELECTRE TRI is the most applicable and developed outranking based classification method in the field of MCDA. By including a large number of parameters, it provides a huge amount of information on criteria which enriches decision making process, although calculation of these large number of parameters is very time consuming and difficult task. To tackle this problem, this paper proposes a new method called NSGA-ELECTRE, by which the NSGA-  algorithm learns ELECTRE TRI and elicits its parameters through an evolutionary process. The proposed method contributes to the literature by utilizing a pair of conflicting objective functions including Type I errors and Type II errors instead of using a single criterion named “classification accuracy” which used frequently in the related works. The proposed bi-objective method is applied to six known credit risk datasets. The NRGA model is used as a benchmark for validation. Computational results indicate outstanding performance of the NSGA-ELECTRE method.
۲.

روش کارای یادگیری ترجیحات مبتنی بر مدل ELECTRE TRI به منظور طبقه بندی چندمعیاره موجودی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: آنالیز ABC الگوریتم های ازدحامی بهینه سازی تراکم ذرات (PSO) طبقه بندی چندشاخصه موجودی ELECTRE TRI

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۹ تعداد دانلود : ۱۳۶
آنالیز چندمعیاره ABC روش شناخته شده ای برای طبقه بندی موجودی هاست که اغلب رویکرد جبرانی را برای تجمیع معیارها لحاظ می کند، یعنی ضعف موجودی در یک معیار با عملکرد خوب آن در معیارهای دیگر جبران می شود. تا جایی که می دانیم رویکرد غیرجبرانی این مسئله به طور کافی مطالعه نشده است. مدل ELECTRE TRI از مدل های مبتنی بر روابط برتری است که این رویکرد را در محاسبات لحاظ می کند، ولی با توجه به پیچیدگی و هزینه بربودن، این مدل در تعیین مقادیر ترجیحات تصمیم گیرندگان (پارامترها)، از اقبال خوبی برخوردار نبوده است. بدین منظور در این مقاله روشی ارائه می شود که با استفاده از الگوریتم بهینه سازی تراکم ذرات (PSO)، مقادیر تمام پارامترها را از داده های آموزشی شامل تصمیمات قبلی تصمیم گیرندگان یاد می گیرد و در طبقه بندی موجودی های جدید به کار می برد. روش پیشنهادی برخلاف مدل های استاندارد داده کاوی که طبقه بندی را به صورت اسمی انجام می دهند، متناسب با روش ABC اقلام موجودی را به صورت رتبه ای طبقه بندی می کند. نتایج به دست آمده از آنالیز تجربی روش پیشنهادی روی دیتاست های موجودی، کارایی و قابلیت رقابت آن را در مقایسه با سایر مدل های طبقه بندی نشان می دهد.