Chatrapathy K

Chatrapathy K

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Breast Cancer Classification through Meta-Learning Ensemble Model based on Deep Neural Networks(مقاله علمی وزارت علوم)

کلید واژه ها: Deep-Learning Meta-Learning EL CNN Breast-Cancer Classification

حوزه های تخصصی:
تعداد بازدید : ۸۱ تعداد دانلود : ۵۸
Predicting the development of cancer has always been a serious challenge for scientists and medical professionals. The prompt identification and prognosis of a disease is greatly aided by early-stage detection. Researchers have proposed a number of different strategies for early cancer detection. The purpose of this research is to use meta-learning techniques and several different kinds of convolutional-neural-networks(CNN) to create a model that can accurately and quickly categorize breast cancer(BC). There are many different kinds of breast lesions represented in the Breast Ultrasound Images (BUSI) dataset. It is essential for the early diagnosis and treatment of BC to determine if these tumors are benign or malignant. Several cutting-edge methods were included in this study to create the proposed model. These methods included meta-learning ensemble methodology, transfer-learning, and data-augmentation. With the help of meta-learning, the model will be able to swiftly learn from novel data sets. The feature extraction capability of the model can be improved with the help of pre-trained models through a process called transfer learning. In order to have a larger and more varied dataset, we will use data augmentation techniques to produce new training images. The classification accuracy of the model can be enhanced by using meta-ensemble learning techniques to aggregate the results of several CNNs. Ensemble-learning(EL) will be utilized to aggregate the results of various CNN, and a meta-learning strategy will be applied to optimize the learning process. The evaluation results further demonstrate the model's efficacy and precision. Finally, the suggested model's accuracy, precision, recall, and F1-score will be contrasted to those of conventional methods and other current systems.
۲.

Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques(مقاله علمی وزارت علوم)

کلید واژه ها: Machine Learning CKD Prediction SVM RF Data Analysis

حوزه های تخصصی:
تعداد بازدید : ۱۰۱ تعداد دانلود : ۵۳
In healthcare, a diagnosis is reached after a thorough physical assessment and analysis of the patient's medicinal history, as well as the utilization of appropriate diagnostic tests and procedures. 1.7 million People worldwide lose their lives every year due to complications from chronic kidney disease (CKD). Despite the availability of other diagnostic approaches, this investigation relies on machine learning because of its superior accuracy. Patients with chronic kidney disease (CKD) who experience health complications like high blood pressure, anemia, mineral-bone disorder, poor nutrition, acid abnormalities, and neurological-complications may benefit from timely and exact recognition of the disease's levels so that they can begin treatment with the most effective medications as soon as possible. Several works have been investigated on the early recognition of CKD utilizing machine-learning (ML) strategies. The accuracy of stage anticipations was not their primary concern. Both binary and multiclass classification methods have been used for stage anticipation in this investigation. Random-Forest (RF), Support-Vector-Machine (SVM), and Decision-Tree (DT) are the prediction models employed. Feature-selection has been carried out through scrutiny of variation and recursive feature elimination utilizing cross-validation (CV). 10-flod CV was utilized to assess the models. Experiments showed that RF utilizing recursive feature removal with CV outperformed SVM and DT.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان