مطالب مرتبط با کلید واژه

SVM


۱.

افزایش دقت در طبقه بندی کاربری و پوشش اراضی مبتنی بر شاخص های قابل استخراج از واریوگرام در تصاویر ماهواره ای

تعداد بازدید : ۸۷۷ تعداد دانلود : ۴۷۵
در طبقه بندی تصاویر، از اطلاعات بافت و واریانس استفاده شده؛ ولی اطلاعات قابل استخراج از واریوگرام کمتر به کار رفته و به تغییرات زمانی واریوگرام کمتر توجه شده است. در این تحقیق، برای تهیة نقشة کاربری و پوشش اراضی منطقة دهگلان واقع در استان کردستان، از تصاویر چند زمانة SPOT و ASTER استفاده شده است. مجموعه ای از شاخص های استخراج شده از واریوگرام معرفی، و پاره ای شاخص جدید استخراج شده و روش SVM برای طبقه بندی به کار رفته است. به طور کلی، این تحقیق در دو مرحله انجام شده است: 1- طبقه بندی باندهای طیفی؛ 2- طبقه بندی باندهای طیفی به همراه پارامترهای استخراج شده از واریوگرام. پس از ارزیابی دقت و مقایسة آن ها، شاخص های مناسب معرفی شده است. بعضی از شاخص ها باعث افزایش دقت اکثر کلاس ها می شوند و برخی از آن ها هم در بعضی کلاس ها بی تأثیرند که این ها را می توان شاخص های عمومی قلمداد کرد. برخی از شاخص ها نیز باعث افزایش دقت برخی کلاس ها و کاهش دقت برخی دیگر از آن ها می شوند که به آن ها شاخص های تخصصی می گویند. بررسی ها نشان می دهد هنگام استفاده از شاخص های استخراج شده از واریوگرام، دقت کلی حدود4 درصد و دقت در برخی از کلاس ها بیش از 9 درصد افزایش می یابد و دقت کلی از 88/98 درصد به 744/92 می رسد.
۲.

مقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)

کلید واژه ها: ANN کاربری اراضی SVM لندست 8 شاخص های گیاهی و خاک بایر

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا فنون جغرافیایی سنجش از راه دور GIS
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۱۱۲۳ تعداد دانلود : ۴۴۹
تهیه نقشه کاربری و پوشش اراضی برای برنامه ریزی و مدیریت منابع طبیعی امری ضروری می باشد. در این بین استفاده از داده های سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کم هزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 به عنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحیحات رادیومتریک با استفاده از روابط موجود در محیط مدل از نرم فزار Erdas فرمول نویسی شد. هم چنین از شاخص های گیاهی NDVI، خاک بایر (BI) و سه مولفه اصلی آنالیز مولفه های اصلی (PCA) به عنوان ورودی در کنار دیگر باندها ب رای افزایش دقت طبقه ب ندی مورد استفاده قرار گرفت. از طرفی توابع کرنل ها و رتبه های چندجمله ای روش ماشین بردار پشتیبان (SVM) مورد ارزیابی قرار گرفت و بهترین نتیجه این روش با روش شبکه عصبی مصنوعی (ANN) مورد مقایسه قرار گرفت. نتایج نشان داد که دقت روش ماشین بردار پشتیبان 92٪ با ضریب کاپا 91/0 و روش شبکه عصبی 89٪ با ضریب کاپا 87/0 می باشد هم چنین جایی که کلاس ها رفتار طیفی مشابهی را از خود نشان می دهند روش SVM کارایی بهتری از خود نشان می دهد.
۳.

ارزیابی عملکرد الگوریتم های ماشین بردار پشتیبان و حداکثر احتمال در تهیة نقشة کاربری اراضی جنگل های رودخانه ای با استفاده از سنجندة OLI (منطقة مورد مطالعه: جنگل های رودخانه ای مارون بهبهان)

کلید واژه ها: SVM MLC جنگل های رودخانه ای سنجندة OLI طبقه بندی مارون بهبهان

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی سنجش از راه دور GIS
تعداد بازدید : ۲۹۷ تعداد دانلود : ۴۱۱
تهیة اطلاعات دقیق و به روز از منابع جنگلی یکی از عوامل اساسی در مطالعه و مدیریت پایدار این منابع است و این اطلاعات را می توان به آسانی و با صرف هزینه و زمان کمتر، از راه طبقه بندی داده های دورسنجی تهیه کرد. در این مطالعه به منظور ارزیابی عملکرد الگوریتم های ماشین بردار پشتیبان و حداکثر احتمال در تهیه نقشه کاربردی اراضی جنگل های رودخانه ای، از داده های ماهواره لندست 8 استفاده شد. برای این کار، پنجره ای از تصاویر چندطیفی سنجندة OLI جنگل های رودخانة مارون بهبهان، در استان خوزستان، انتخاب شد. پس از عملیات پیش پردازش، شامل رفع خطای رادیومتریک و تصحیح اتمسفریک، طبقه بندی تصاویر به روش نظارت شده و با استفاده از الگوریتم های حداکثر احتمال و ماشین بردار پشتیبان و با هفت کلاس کاربری جنگل، مرتع، کشاورزی، آیش، رودخانه، مسکونی و جاده، و همچنین سه کلاس کاربری جنگل، رودخانه و دیگر مناطق، روی مجموعة باندهای اصلی صورت پذیرفت. برای ارزیابی عملکرد الگوریتم ماشین بردار پشتیبان، از سه گروه نمونة تعلیمی با تعداد 241، 141 و 41 نمونه و همچنین از چهار هستةخطی، چندجمله ای، شعاعی و حلقوی استفاده شد. نتایج حاصل نشان داد که تهیة نقشة طبقه بندی جنگل های رودخانه ای مارون و تفکیک کاربری ها با استفاده از تصاویر سنجندة OLI امکان پذیر است و بهترین نتیجه مربوط به طبقه بندی، با استفاده از الگوریتم - PolynomialSVM در باندهای اصلی سنجندة OLI و با سه کلاس کاربری و صحت کلی 24/99 و ضریب کاپای 97/0 است. همچنین مشخص شد که با کاهش تعداد کلاس ها از هفت به سه، کاربری صحت طبقه بندی افزایش می یابد ولی با کاهش تعداد نمونه ها تا حد میانگین، تغییر محسوسی در کیفیت طبقه بندی رخ نمی دهد و در صورت کاهش زیاد تعداد نمونه ها، از صحت طبقه بندی نیز کاسته می شود.
۴.

ارزیابی کارآیی شاخص های طیفی پوشش گیاهی پهن باند در پیش بینی شرایط خشکسالی در ایران

تعداد بازدید : ۱۸۷ تعداد دانلود : ۲۱۵
ایران یکی از کشورهای خشک و نیمه خشک به شمار می رود که به خشکسالی دچار است. کمبود اطلاعات هواشناسی طولانی مدت در پهنه وسیعی از کشور یکی از بزرگ ترین مشکلات برای مشاهده و پیش بینی کوتاه مدت خشکسالی در ایران است. در این مقاله، با به کار بردن روش ماشین بردار پشتیبان (SVM) و با استفاده از داده های 42 ایستگاه سینوپتیک منتخب در ایران، عملکرد شاخص های پوشش گیاهی طیفی پهن باند NDVI، NDVI-DEV، VCI و TCI در پیش بینی خشکسالی بررسی شد. بدین منظور، از شاخص خشکسالی (SPI) برای بیان خشکسالی استفاده شد که نشان دهنده شدت و دوره خشکسالی، از سال 1985 تا 2008 است. شاخص های پوشش گیاهی یادشده از تصاویر سنجنده NOAA-AVHRR محاسبه و استخراج شدند. این شاخص ها، به صورت ورودی، به مدل SVM وارد شدند و مقادیر SPI را به دست دادند. با این روش، شاخص های TCI و NDVI، به ترتیب، دارای بالاترین و پایین ترین همبستگی با شرایط خشکسالی شناخته شدند
۵.

تحلیلی بر تغییرات و پیش بینی روند کاربری اراضی شهر ارومیه با استفاده از مدل SVM و شبکه های عصبی

تعداد بازدید : ۶۸ تعداد دانلود : ۶۴
رشد جمعیت شهرنشین با افزایش فضاهای شهری و به طورکلی، با رشد اندازه شهرها همراه بوده است. این امر به صورت ساخت وساز بیشتر و تغییر اراضی موجود به نفع فضاهای ساخته شده بروز می یابد. موقعیت خاص شهر ارومیه در مجاورت دریاچه ارومیه و شرایط نامساعد این دریاچه لزوم توجه به برنامه ریزی صحیح کاربری اراضی را، در این شهر، ناگزیر می کند. یکی از ابزارهای مورد نیاز برای برنامه ریزی مناسب، در این زمینه، بهره گیری از تکنیک های سنجش از دور است. پژوهش حاضر با هدف ارزیابی این تغییرات (دوره 2015-1989) و پیش بینی روند آتی آن صورت گرفته است. از روش های SVM و شبکه عصبی برای ارزیابی تغییرات در پنج کلاس استفاده شده است. ضریب تعیین (0.73) و منحنی راک (82.55%) نیز بیانگر دقت بالای مدل شبکه عصبی برای پیش بینی تغییرات گسترش شهری اند. با توجه به دقت بالای این مدل، که می تواند نتایج واقعی تری ارائه دهد، از نتایج این نوع طبقه بندی در پیش بینی تغییرات برای افق 2045 استفاده شده است. اراضی ساخته شده در سال 1989 برابر با 7469.1 هکتار بوده که در سال 2002 و 2015، به ترتیب، به 9217.3 و 9436.9 هکتار رسیده است. در سال 2045، براساس مدل پیش بینی شبکه عصبی، برابر با 22449.6 هکتار خواهد بود که 13012.7 هکتار افزایش را در اراضی ساخته شده نشان می دهد. نتایج حاصل گویای این است که تمامی این ساخت وسازها برمبنای نیاز واقعی شهر نبوده و پدیده اسپرال (گستردگی شهری) اتفاق افتاده است.
۶.

ترکیب تصاویر چندطیفی و SAR با قدرت تفکیک مکانی بالا به منظور آشکارسازی ساختمان ها در مناطق شهری

تعداد بازدید : ۴۹ تعداد دانلود : ۵۴
در این مقاله، به منظور رفع برخی محدودیت های شناسایی ساختمان در تصاویر چندطیفی، از داده SAR به منزله داده مکمل استفاده می شود. در روش پیشنهادی، برای استفاده هم زمان از اطلاعات مفید در تصاویر رادار و چندطیفی، استراتژی مبتنی بر تلفیق تصاویر، با هدف شناسایی ساختمان، مطرح می شود. همچنین، ازآن جاکه انتخاب ویژگی نقش بسزایی در شناسایی و طبقه بندی عوارض دارد، اغلب روش های مرسوم و رایج در این زمینه، مانند الگوریتم ژنتیک، نیازمند داده های آموزشی اند؛ اما دردسترس نبودن همیشگی این نوع داده های آموزشی یکی از دغدغه های مهم محققان به شمار می آید. پس در این تحقیق، دو روش انتخاب ویژگی فیلترمبنا بررسی می شود تا مشخص شود آیا روش های یادشده می توانند، در مواقع لازم (نبودِ داده آموزشی)، جایگزین الگوریتم ژنتیک شوند؟ بنابراین، در پژوهش حاضر، ابتدا بردار ویژگی بهینه از تصویر چندطیفی و SAR، با سه روش MNF وPCA  و ژنتیک، تعیین و هریک جداگانه وارد هر دو طبقه بندی کننده شبکه عصبی و SVM می شود. سپس به منظور رفع مشکلاتی، همچون تشابه طیفی پشت بام ها با پوشش آسفالت خیابان ها، در تصاویر چندطیفی و بهبود نتایج، دو تصویر چندطیفی و SAR در سطح ویژگی تلفیق می شود. در نهایت و در مرحله بعدی، بهترین تصاویر طبقه بندی شده با شبکه عصبی و SVM، در تمامی بررسی های صورت گرفته تا به این مرحله، وارد تلفیق در سطح تصمیم گیری می شوند. نحوه تلفیق در سطح تصمیم گیری بدین صورت است که اطلاعات همسایگی هر پیکسل در قالب پنجره مکانی متحرک در ابعاد متفاوت، با هدف تصمیم گیری درمورد ماهیت هر پیکسل، استفاده می شود. بنابراین، نتایج حاصل شده در این تحقیق، با صحت کلی و دقت شناسایی ساختمان، به ترتیب 92.82% و 80.14% بیانگر عملکرد مناسب این روش است.
۷.

An Intelligent Method for Indian Counterfeit Paper Currency Detection

تعداد بازدید : ۱۹ تعداد دانلود : ۹
The production of counterfeit paper currencies has become cheaper because of the advancement in the printing technologies. The circulation of counterfeit currencies down the economy of a country. By leveraging this, there is a mandate to develop an intelligent technique for the detection and classification of counterfeit currencies. The intelligent techniques play a major role in the field of Human Computer Interaction (HCI) too. This paper deals with the detection of counterfeit Indian currencies. The proposed method feature extraction is based on the characteristics of Indian paper currencies. The first order and second order statistical features are extracted initially from the input. The effective feature vectors are given to the SVM classifier unit for classification. The proposed method produced classification accuracy of 95.8%. The experimental results are compared with state-of-the methods and produced reliable results.
۸.

Classification of Lung Nodule Using Hybridized Deep Feature Technique

تعداد بازدید : ۳۲ تعداد دانلود : ۱۲
Deep learning techniques have become very popular among Artificial Intelligence (AI) techniques in many areas of life. Among many types of deep learning techniques, Convolutional Neural Networks (CNN) can be useful in image classification applications. In this work, a hybridized approach has been followed to classify lung nodule as benign or malignant. This will help in early detection of lung cancer and help in the life expectancy of lung cancer patients thereby reducing the mortality rate by this deadly disease scourging the world. The hybridization has been carried out between handcrafted features and deep features. The machine learning algorithms such as SVM and Logistic Regression have been used to classify the nodules based on the features. The dimensionality reduction technique, Principle Component Analysis (PCA) has been introduced to improve the performance of hybridized features with SVM. The experiments have been carried out with 14 different methods. It has been found that GLCM + VGG19 + PCA + SVM outperformed all other models with an accuracy of 94.93%, sensitivity of 90.9%, specificity of 97.36% and precision of 95.44%. The F1 score was found to be 0.93 and the AUC was 0.9843. The False Positive Rate was found to be 2.637% and False Negative Rate was 9.09%.