تاکسونومی شناسایی مشتریان صنعت بانکی با بکارگیری یادگیری ماشین: مروری نظامند با رویکرد فرا ترکیب(مقاله علمی وزارت علوم)
حوزه های تخصصی:
هدف: امروزه مشتری در هیچ صنعتی صرفاً به دنبال محصول نیست و دریافت سرویس شخصی سازی شده مبتنی بر نیازمندی های خود و خلق یک تجربه متفاوت را از سازمان انتظار دارد؛ از نگاه دیگر طراحی سرویس های متناسب با نیاز مشتری مستلزم بررسی موشکافانه داده های مرتبط با مشتری و در ابعاد مختلف خواهد بود. لذا شناخت مشتری نیازمند نگرشی نظامند است تا اهداف، فاکتورهای تاثیر گذار و الگوریتم ها و متد های مناسب این حوزه مورد توجه واقع شود. روش شناسی: در راستا هدف این پژوهش، پژوهش پیشرو با رویکرد فراترکیب، ابعاد حوزه شناخت مشتری صنعت بانکی و ملاحظات آن را با رویکرد داده محور و به کارگیری یادگیری ماشین تحلیل نموده است .از این رو، روش پژوهش بر حسب هدف کاربردی و بر حسب گردآوری اطلاعات فراترکب است. برای انتخاب مقاله ها با جست و جو در پایگاه داده های معتبر وب آو ساینس و اسکوپوس 43 سند که در فاصله زمانی 2016- 2022 منتشر شده است، به عنوان اسناد مرتبط و معتبر شناسایی و در ادامه نیز با رویکرد فراترکیب، اسناد منتخب بررسی و کدگذاری شده اند. نتایج : نتایج حاصل از فراترکیب منجر به شناسایی سه مقوله اصلی: اهداف شناسایی مشتری: درک بینش نسبت به مشتری، شناسایی ریسک مشتری، اهداف سازمانی، تعیین ارزش طول عمر مشتری و مدیریت محصول، فاکتورهای شناسایی مشتری: جمعیت شناختی، مالی و رفتاری و الگوریتم های یادگیری ماشین: Probabilistic، Neural Networks ،Ensemble ، Regularization ، Regression ، Bayesian، Decision Tree ، Dimensionality Reduction ، Instanced Based و Clustering گردید. نتیجه گیری: بر اساس یافته های پژوهش جاری، متناسب با هدف شناسایی مشتری، داده های موجود و فاکتورهای انتخابی، الگوریتم های پایه و ترکیبی می تواند راهگشا باشد اما نکته مهم پیش پردازش دقیق داده ها می باشد. همچنین این مهم با توجه به عدم تاکید بانک ها به شعب مبنی بر لزوم تکمیل اطلاعات مندرج در فرم ها توسط مشتری در زمان افتتاح حساب یا عدم طراحی سرویس مناسب جهت تکمیل اطلاعات در بسترهای الکترونیک نیازمند بازبینی کامل می باشد.