پیش بینی قیمت نفت با دو روش ARIMA و شبکه های عصبی مصنوعی(مقاله علمی وزارت علوم)
حوزه های تخصصی:
توانایی کم نظیر شبکه های عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهش های انجام شده در مورد توانایی پیش بینی مدل های خود توضیح جمعی میانگین متحرک (ARIMA) و شبکه های عصبی مصنوعی(ANN) به مقایسه این دو روش برای پیش بینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداخته ایم. افزون بر این، در این پژوهش پس از مدلسازی به وسیله شبکه های عصبی مصنوعی، به منظور تشخیص سهم مشارکت هر پارامتر ورودی در این مدل از تجزیه و تحلیل حساسیت استفاده کرده ایم. با توجه به حجم وسیع به کارگیری اطلاعات روزانه قیمت جهانی نفت (بیش از 5500 روز اطلاعات) نتایج به دست آمده نشان دهنده برتری غیرقابل مقایسه مدل شبکه های عصبی مصنوعی نسبت به مدل ARIMA در پیش بینی قیمت روزانه نفت است.