پریسا ساکتی

پریسا ساکتی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

بررسی مقایسه ای توان پیش بینی شبکه های عصبی مصنوعی با روش توقف زودهنگام و فرایند سری زمانی خودبازگشت در برآورد نرخ تورم(مقاله علمی وزارت علوم)

کلید واژه ها: تورم پیش بینی شبکه عصبی سری های زمانی انتخاب مدل

حوزه های تخصصی:
تعداد بازدید : ۱۸۴۲
ین مقاله به بررسی مقایسه ای توان شبکه های عصبی مصنوعی و سری های زمانی خودبازگشت در پیش بینی ایستای نرخ تورم ایران می پردازد. در یک بررسی، با استفاده از 37 سال داده های تاریخی نرخ تورم ایران، مدل شبکه عصبی مصنوعی در پیش بینی آینده نزدیک در مقایسه با سری های زمانی خودبازگشت، به‎طور متوسط از عملکرد بهتری برخوردار است. در این بررسی، مزایای روش توقف زودهنگام در مرحله یادگیری شبکه عصبی برای پیش بینی سری های زمانی نشان داده شده است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان