کنترل بهینه پویایی مشتری از روش یادگیری ماشین با هسته چندجمله ای(مقاله پژوهشی دانشگاه آزاد)
حوزه های تخصصی:
در این پژوهش، یک مدل از کنترل بهینه برای پویایی مشتریان براساس سیاست های بازاریابی به عنوان یک سیستم غیر خودکار از معادلات دیفرانسیل مورد بررسی قرار می گیرد. هدف اصلی مدل پیگیری و تحلیل رفتار تغییرات همزمان مشتریان منظم، ارجاعی و بالقوه شرکت از زمان شروع تا به اکنون است. پیاده سازی یک سیاست بازاریابی موثر برای بهینه سازی این تغییرات و افزایش تعداد مشتریان از اهمیت ویژه ای برخوردار است. در راستای این هدف، یک الگوریتم جدید یادگیری ماشین نظارتی را برای شبیه سازی عددی مسئله ارائه شده است. الگوریتم پیشنهادی از هسته های چندجمله ای استفاده می کند. هسته های چندجمله ای این امکان را فراهم می آورند که تابعی پیچیده از داده ها را به گونه ای شبیه سازی کنند که به درک بهتر پویایی مشتریان کمک کند. رگرسیون بردار پشتیبان کمترین مربعات، یک روش بهینه سازی ساده برای استراتژی های بازاریابی ارائه می دهند که با این رویکرد، می توان استراتژی های بازاریابی را بدون پرداختن به جزئیات مربوط به هر مشتری بهینه کرد و به جای آن تمرکز را بر اثر کلی این استراتژی ها بر روی مجموعه مشتریان گذاشت. این تحقیق نشان می دهد که چگونه تکنیک های یادگیری ماشین می توانند در حل مسائل پیچیده مدیریت و بازاریابی کمک کننده باشند. با گذر زمان، تعداد مشتریان منظم افزایش می یابد و افراد مشتریان بالقوه کاهش می یابند. اما، تعداد مشتریان ارجاعی نشان دهنده یک رشد سریع در ابتدای دوره زمانی و وجود یک الگوی افزایشی نوسانی در ادامه زمان است.