بررسی مقایسه ای مدل یادگیری عمیق با طبقه بندی دوتایی و چندتایی جهت پیش بینی روند بازار سهام از طریق تشخیص الگوهای فراکتال مبتنی بر تئوری امواج الیوت(مقاله علمی وزارت علوم)
منبع:
اقتصاد مالی سال ۱۸ بهار ۱۴۰۳ شماره ۱ (پیاپی ۶۶)
125 - 148
حوزه های تخصصی:
یکی از روش های محبوب اما پیچیده در تحلیل تکنیکال، روش امواج الیوت است. در این روش مهمترین بخش، تشخیص الگوهای روند اصلی بازار است که با توجه به ساختار فراکتال بازار، کاری دشوار است. اما همانند سایر حوزه ها، بکارگیری هوش مصنوعی در زمینه ی پیش بینی های مالی نیز بسیار فراگیر شده است. لذا به نظر می رسد بکارگیری هوش مصنوعی در تحلیل به روش امواج الیوت، جذاب باشد. لذا در پژوهش حاضر با معرفی مدل یادگیری عمیق جهت پیش بینی بازار از طریق تشخیص الگوهای امواج الیوت، به بررسی و مقایسه ی توان مدل در دو حالت طبقه بندی دوتایی و چندتایی پرداخته شده است. در این پژوهش برای 15 الگوی مدنظر، تعداد 1002 نمونه از نمودارهای قیمت سهام شرکت های حاضر در بورس ایران در دوره 11 ساله 1390 تا 1400، جمع آوری و برچسب گذاری گردید و نهایتاً برای تشخیص به عنوان ورودی به الگوریتم یادگیری عمیق با بکارگیری مدل شبکه های عصبی بازگشتی، در دو حالت طبقه بندی دوتایی و چندتایی وارد گردید. در این پژوهش جهت طراحی و اجرای مدل از نرم افزار RapidMiner 9.9 و جهت تعیین توان مدل از معیار صحت استفاده شد. نتایج حاصل نشان دهنده ی صحت %18 در تشخیص الگوها در حالت طبقه بندی چندتایی و صحت 61% در حالت طبقه بندی دوتایی است. لذا توان مدل یادگیری عمیق در تشخیص الگوهای فراکتال امواج الیوت و در نتیجه پیش بینی روند بازار، در حالت طبقه بندی دوتایی به طور قابل توجهی نسبت به حالت طبقه بندی چندتایی بالاتر است. بنابراین پژوهش حاضر بکارگیری مدل یادگیری عمیق با طبقه بندی دوتایی را جهت تشخیص الگوهای فراکتال امواج الیوت توصیه می نماید.