تعیین هوشمند اندازه بار در آزمون وینگیت با استفاده از تکنیک های داده کاوی(مقاله علمی وزارت علوم)
زمینه و هدف: آزمون وینگیت شامل 30 ثانیه تمرین فوق بیشینه روی یک دوچرخه کارسنج است که میزان بار اعمال شده براساس وزن فرد تعیین می شود. اندازه بار علاوه بر وزن آزمودنی به پارامترهایی از جمله سن و جنسیت نیز وابسته است. عاوه بر پارامترهای نامبرده شده، پارامتر هایی ازقبیل میزان سطح ورزشی، درصد چربی زیر پوستی و سطح مصرف دخانیات آزمودنی نیز در تعیین اندازه بار تاثیرگذار می باشند. هدف از پژوهش حاضر ارائه یک روش هوشمند با استفاده از تکنیک داده کاوی برای تعیین اندازه بار در آزمون وینگیت با توجه به تمامی پارامتر های مداخله گر می باشد . روش تحقیق: آزمون وینگیت به وسیله چرخ کارسنج(مونارک 894) سه نوبت روی 30 نفر داوطلب مرد ازدانشجویان دانشگاه اصفهان انجام شد. در این تحقیق از نرم افزار راپیدماینر برای تجزیه و تحلیل داده ها استفاده شده است . یافته ها : براساس الگوریتم های داده کاوی ویژگی هایی که بیشترین تاثیر را به ترتیب در پیش بینی میزان بار داشته اند شامل: قد، وزن، سن، ورزش، میزان چربی زیرپوستی خاصره ای و میزان چربی زیر پوستی شکمی می باشد . نتیجه گیری: بر اساس نتایج به دست آمده از این تحقیق، تکنیک داده کاوی توانسته است اندازه بار را چه برای داد ههای آموزشی و چه برای داد ههای آزمایشی پیش بینی کند. بنابراین با استفاده از تکنیک مورد نظر می توان اندازه بار را برای افراد بطور دقیق پیش بینی کرد. نرم افزار حاصل از این تحقیق درحال ویرایش نهایی برای ارائه به بازار است.