مریم حاجی پور ساردویی

مریم حاجی پور ساردویی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

طراحی و تبیین الگوی انطباقی مدیریت فناوری اطلاعات برای سازمان های دولتی کشور(مقاله علمی وزارت علوم)

کلید واژه ها: سازمان های دولتی مدیریت فناوری اطلاعات الگوی انطباقی هم راستایی سرمایه گذاری IT مخاطرات IT ارائه ارزش پایش IT

حوزه های تخصصی:
تعداد بازدید : ۲۲۱۹ تعداد دانلود : ۱۰۴۳
با توجه به اهمیت و جایگاه ویژه فناوری اطلاعات در سازمان های دولتی ایران، رویکرد و نگرش مدیران و نیاز مبرم سازمان های دولتی به الگویی ساخت یافته به منظور مدیریت فناوری اطلاعات و آگاهی و شناخت کافی نسبت به برون سپاری هر یک از مؤلفه ها و شاخص های آن الگو، این تحقیق با هدف ارائه الگوی انطباقی مدیریت فناوری اطلاعات برای سازمان های دولتی کشور، انجام پذیرفته است. روش تحقیق مورد استفاده در این نوشتار، روشی توصیفی است و از لحاظ نوع تحقیق، کاربردی است. جامعه آماری و گروه نمونه مورد مطالعه پژوهش در بخش طراحی الگو متشکل از خبرگان دانشگاهی و در بخش مطالعه موردی برای اجرای الگوی طراحی شده، متشکل از خبرگان وزارت صنایع و معادن و سازمان های تحت پوشش آن است. پس از بررسی پیشینه پژوهش به طراحی الگو پرداخته شد. سپس بر اساس نظریات خبرگان دانشگاه، الگوی مذکور آزمون شد. نتایج تحقیق حاکی از آن است که مؤلفه های الگوی انطباقی مدیریت فناوری اطلاعات در سازمان های دولتی کشور عبارتند از هم راستایی برنامه ریزی راهبردی IT و معماری IT سازمان سرمایه گذاری IT، مخاطرات IT، ارائه ارزش و پایش IT. پس از تأیید اجزای و کلیت الگو بر اساس نظریات خبرگان دانشگاهی، الگوی مذکور در وزارت صنایع و معادن و سازمان های تحت پوشش آن به کار گرفته شد. نتایج به کارگیری مدل در صنعت با نظریات خبرگان دانشگاه مقایسه و تحلیل و بر این اساس راهکارهای لازم ارائه شد
۲.

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy(مقاله علمی وزارت علوم)

کلید واژه ها: Big data analytics deep learning Now-casting Monetary policy

حوزه های تخصصی:
تعداد بازدید : ۴۲۸ تعداد دانلود : ۲۰۷
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated where it considers eventuality. So, it is necessary to consider the highly data-driven technologies and to use new methods of analysis, like machine learning and visualization tools, with the ability of interaction and connection to different data resources with varieties of data regarding the type of big data aimed at reducing the risks of policy-making institution’s investment in the field of IT. The main scientific contribution of this article is presenting a new approach of policy-making for the now-casting of economic indicators in order to improve the performance of forecasting through the combination of deep nets and deep learning methods in the data and features representation. In this regard, a net under the title of P-V-L Deep: Predictive Variational Auto Encoders - Long Short-term Memory Deep Neural Network was designed in which the architecture of variational auto-encoder was used for unsupervised learning, data representation, and data reconstruction; moreover, long short-term memory was adopted in order to evaluate now-casting performance of deep nets in time-series of macro-econometric variations. Represented and reconstructed data in the generative network of variational auto-encoder to determine the performance of long-short-term memory in the forecasting of the economic indicators were compared to principal data of the net. The findings of the research argue that reconstructed data which are derived from variational auto-encoder embody shorter training time and outperform of prediction in long short-term memory compared to principal data.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان