مطالب مرتبط با کلیدواژه

مدل های هوش محاسباتی


۱.

بررسی احتمال خشکسالی و انتخاب مناسب ترین شاخص در نواحی اقلیمی ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: خشکسالی مدل های هوش محاسباتی تئوری ابری عدم قطعیت نواحی اقلیمی ایران

حوزه های تخصصی:
تعداد بازدید : ۴۵ تعداد دانلود : ۴۹
هدف: ایران کشوری پهناور است که به دلیل موقعیت جغرافیایی و شرایط توپوگرافی، دارای آب و هوایی متفاوت است. پژوهش حاضر با هدف انتخاب مناسب ترین شاخص خشکسالی در نواحی اقلیمی ایران و بررسی احتمال وقوع آن از طریق روش های عدم قطعیت انجام شده است.روش و داده: لذا در این پژوهش در گام نخست از طریق روش های تصمیم گیری چندمعیاره، مناسب ترین شاخص برای هر ناحیه اقلیمی بر اساس درصد تناسب، انتخاب و در نهایت بر اساس روش های شبکه عصبی مصنوعی، آنالیز احتمالی محاسبه و درصد احتمال وقوع پدیده خشکسالی برای هر ناحیه تعیین شده است. پس از انتخاب شاخص مناسب، برای بیان احتمال وقوع خشکسالی از داده های آماری ایستگاه های سینوپتیک کشور در یک دوره آماری ۲۸ ساله (۲۰۱۷-۱۹۹۰) استفاده شده است. با توجه به توالی داده های بارشی، از دو نوع شبکه عصبی معمولی و عمیق برای بررسی پدیده خشکسالی استفاده گردید. ضمناً برای جبران کمبود داده ها و افزایش سرعت همگرایی شبکه، از روش کرنل برای تولید داده ها در آموزش شبکه عصبی، و برای تحلیل شبکه عصبی مصنوعی و محاسبه احتمال رخداد پدیده خشکسالی، از نظریه تئوری ابری استفاده شده است.یافته ها: در حالت کلی نتیجه نهایی آنالیز تئوری ابری از داده های مورد مطالعه نشان می دهد که در تمامی ایستگاه های بررسی شده در سال هدف یعنی سال ۲۰۱۷، کشور ایران و تمامی ایستگاه های نماینده، وضعیت اقلیمی نزدیک به محدوده نرمال را نشان داده اند و کشور به لحاظ شدت خشکسالی در سال مذکور تقریباً در محدوده نرمال قرار داشته است. بیشترین قطعیت وقوع خشکسالی، به ترتیب به ایستگاه تبریز (۹۶ درصد) و ایستگاه همدان (۹۴ درصد) تعلق دارد.نتیجه گیری: بر مبنای نتایج، مدل عدم قطعیت انتخابی در آنالیز احتمال از توانایی بالایی برخوردار بوده و با درصد اطمینان قابل قبولی احتمال رخداد خشکسالی را پیش بینی کرده است.نوآوری، کاربرد نتایج: با توجه به تفاوت مناطق اقلیمی ایران و حذف مداخله کاربر، و با استفاده از محاسبات علمی و ریاضی، ضریب خطا در انتخاب شاخص کاهش می یابد. سپس با کمک روش های عدم قطعیت مانند تئوری ابری، توانایی پیش بینی احتمال وقوع خشکسالی در آینده افزایش می یابد.