مطالب مرتبط با کلیدواژه

تشخیص دیابت


۱.

ارائه یک مدل تشخیص دیابت مبتنی بر شبکه های عصبی عمیق بازگشتی و الگوریتم بیش نمونه گیری

کلیدواژه‌ها: تشخیص دیابت شبکه عصبی بازگشتی بیش نمونه گیری داده های پرت یادگیری ماشین

حوزه های تخصصی:
تعداد بازدید : ۹۸ تعداد دانلود : ۶۱
دیابت، به گروهی از اختلالات متابولیکی گفته می شود که نتیجه عدم کنترل قند خون است. تشخیص به موقع و در ادامه کنترل این بیماری به خوبی باعث کاهش اثرات ناشی از آن مثل رتینوپاتی دیابتی، گرفتگی قلبی و عروقی سکته های مغزی و غیره می شود. محققان تا به امروز تلاش های بسیاری در این زمینه کرده اند؛ اما اغلب این مدل ها یا مبتنی بر روش های یادگیری ماشین ساده و یا بر این فرض استوار هستند که داده های دیابت در دسترس متوازن هستند. از اینرو، در این مقاله یک مدل تشخیص بیماری دیابت مبتنی بر شبکه های عصبی بازگشتی عمیق و الگوریتم بیش نمونه گیری SMOTE ارائه شده است. در این مدل چندین مرحله پیش پردازش شامل مقدار دهی به مقادیر از دست رفته، حذف داده های پرت و سپس بیش نمونه گیری انجام شده است. از سه شبکه عصبی عمیق بازگشتی با سه واحد پنهان بازگشتی شامل LSTM, GRU و BiLSTM برای تشخیص استفاده شده است. نتایج مدل ارائه شده بر روی پایگاه داده Pima حاکی از آن است که میانگین صحت در 10 اجرای مختلف در LSTM و GRU و BiLSTM به ترتیب 91.21 % ، 89.61 و 90.99 % است. نتایج مدل بازگشتی ما نشان می دهد، شبکه های عصبی عمیق در مقایسه با روش های یادگیری ماشین عملکرد بسیار موفق تری دارند.