مسائل به طورمطلق حل ناپذیر و رایانه های خارق العاده(مقاله علمی وزارت علوم)
منبع:
منطق پژوهی سال ۱۴ بهار و تابستان ۱۴۰۲ شماره ۱ (پیاپی ۲۷)
195 - 204
حوزه های تخصصی:
ابتدا، در پرتو آراء ففرمن، به بررسی دوگانه گودل می پردازیم مبنی بر اینکه یا توانایی های ذهن انسان از هر ماشین متناهی فراتر است، و یا معادلات ریاضی از نوع دیوفانتی وجود دارند که به طور مطلق حل ناپذیر هستند. سپس برهان پاتنم را بررسی می کنیم مبنی بر این که اگر توانایی علمی ذهن انسان را بتوان توسط یک ماشین تورینگ با توانایی تهیه سیاهه ای از نتایج علمی شبیه سازی کرد، این ماشین جمله ای که این توانایی را بیان می کند را به عنوان خروجی ارائه نخواهد کرد. در تلاش برای فهم بهتر این برهان، آن را در زبان منطق وجهی بازسازی می کنیم. در ادامه، به امکان رایانه های خارق العاده برای انجام تعدادی بی شمار عمل پایه ای محاسباتی در زمان متناهی می پردازیم. این امکانی است که اخیراً بر اساس نظریه های جدید فیزیکی مطرح شده است. استدلال می کنیم با فرض تحقق چنین امکانی، حساب مرتبه اول متعین خواهد بود، به این معنی که صادق یا کاذب بودن هر جمله حسابی توضیح پذیر خواهد بود.