تاثیر اطلاعات سرمایه در گردش در پیش بینی درماندگی مالی بر مبنای ترکیب شبکه عصبی مصنوعی و الگوریتم تجمعی حرکت ذرات(مقاله علمی وزارت علوم)
منبع:
چشم انداز مدیریت مالی سال ۱۲ تابستان ۱۴۰۱ شماره ۳۸
75 - 101
حوزه های تخصصی:
با وجود این واقعیت که مدیریت سرمایه در گردش در درماندگی مالی نقشی محوری دارد؛ اما مطالعات انجام شده در این زمینه، تاکنون درک عمیقی از چگونگی تأثیرگذاری اطلاعات سرمایه در گردش بر درماندگی مالی را فراهم نکرده است؛ از این رو هدف اصلی این پژوهش بررسی تاثیر اطلاعات سرمایه در گردش در پیش بینی درماندگی مالی بر مبنای ترکیب شبکه عصبی مصنوعی و الگوریتم بهینه سازی حرکت تجمعی ذرات است. نمونه آماری متشکل از 120 شرکت پذیرفته شده در بورس اوراق بهادار تهران برای دوره زمانی 1387 تا ۱۳۹۸ است. در راستای دستیابی به اهداف پژوهش، ابتدا 28 متغیر اثرگذار بر درماندگی مالی انتخاب و سپس با استفاده از روش رگرسیون لجستیک پیش رو مدل برآورد و 5 متغیر تاثیرگذار انتخاب گردید. در گام بعد، به منظور بررسی محتوای اطلاعاتی مدیریت سرمایه در گردش به مقایسه مدل پژوهش با توجه و بدون توجه به متغیر مدیریت سرمایه در گردش بر مبنای ترکیب شبکه های عصبی مصنوعی و الگوریتم بهینه سازی حرکت تجمعی ذرات پرداخته شده است. نتایج مقایسه دو مدل نشان داد توسعه مدل پژوهش، خطای آموزش شبکه عصبی با الگوریتم حرکت تجمعی ذرات را ب ه مق دار 0641/0 ک اهش می دهد. همچنین، با توسعه مدل پژوهش، از طریق وارد کردن متغیر مدیریت سرمایه در گردش، سطح زیرمنحنی راک به 6248/0 افزایش می یابد و در نتیجه، بر دقت مدل پژوهش تا 53/70 درصد افزوده می شود. همچنین نتایج، افزایش قدرت مدل توسعه یافته پژوهش را نش ان م ی ده د؛ ام ا نتیجه آزمون ضعیف است و نشان می دهد مدل توسعه یافته پژوهش نیز در تفکیک ش رکت ه ا به دو گ روه درمانده و غیر درمانده مالی، کمابیش یک مدل تصادفی است