مطالب مرتبط با کلیدواژه

شبکه های خود رمزنگار


۱.

استفاده از الگوریتم های یادگیری مولد عمیق به منظور تخمین غلظت ذرات معلق در شهر تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدل های عمیق مولد یادگیری عمیق شبکه های خود رمزنگار غلظت PM2.5 عمق لایه ی نوری ایروسل مودیس

حوزه های تخصصی:
تعداد بازدید : ۲۸۳ تعداد دانلود : ۲۰۸
در دهه های اخیر، سطح غلظت ذرات معلق در کلان شهر تهران افزایش یافته است که این امر، مخاطرات فراوانی را برای محیط زیست و سلامت شهروندان به همراه داشته است. یکی از خطرناک ترین نوع آلودگی ها، آلودگی ذرات معلق کمتر از 2.5 میکرون ( PM2.5 ) هست که مدل سازی، پایش و پیش بینی آن را بسیار حیاتی می نماید. برآورد غلظت این ذرات در سطح شهر تهران به دلیل وجود منابع گوناگون آلودگی و کمبود ایستگاه های هواشناسی و عدم توزیع مناسب ا یستگاه ها موضوعی چالش برانگیز است. یکی از منابع جایگزین، استفاده از داده های به دست آمده از طریق تصاویر ماهواره ای شامل داده های ایروسل با توان تفکیک مکانی بالاست. بااین حال تخمین مقادیر آلودگی سطحی از روی داده های ایروسل ماهواره ای به سادگی امکان پذیر نیست و نیازمند توسعه مدل های مناسب نظیر مدل های داده مبنا و استفاده از تکنیک های یادگیری ماشینی می باشد. در این راستا هدف این مقاله ایجاد یک مدل به منظور تخمین میزان غلظت ذرات معلق در سطح شهر تهران با استفاده از داده های حاصل از مدل های هواشناسی و داده های ایروسل به دست آمده از تصاویر ماهواره ای مودیس به کمک الگوریتم های یادگیری عمیق مولد هست. برای این منظور سه نوع شبکه یادگیری عمیق بر مبنای مدل های مولد یعنی شبکه خود رمزنگار عمیق، شبکه باور عمیق بولتزمن و شبکه مولد تخاصمی شرطی برای تخمین غلظت PM2.5 با استفاده از داده های زمینی و ماهواره ای جمع آوری شده، توسعه داده شد. سپس ارزیابی دقت مدل های ایجادشده توسط شبکه های مذکور بر روی داده های تست انجام شد و عملکرد آن ها مورد بررسی و مقایسه قرار گرفت. ارزیابی دقت نشان داد که شبکه خود رمزنگار ترکیب شده با مدل بردار پشتیبان مبنا با همبستگی0.69 و دقت ( RMSE ) 10.34 میکروگرم بر مترمکعب بالاترین کارایی را در مقایسه با سایر مدل ها به دست می دهد که می تواند به منظور مدل سازی میزان غلظت ذرات در سطح شهر تهران مورد استفاده قرار گیرد.
۲.

بازسازی تصاویر تصویربرداری تشدید مغناطیسی کارکردی با استفاده از سیگنال های الکتروآنسفالوگرام با روش شبکه های کانولوشنی همبند متراکم خود رمزنگار(مقاله علمی وزارت علوم)

کلیدواژه‌ها: یادگیری عمیق میدان انتقال مارکوف DenseNet fastICA شبکه های خود رمزنگار

حوزه های تخصصی:
تعداد بازدید : ۲۶۰ تعداد دانلود : ۱۷۰
مقدمه: داده های استفاده شده در این مدل یادگیر از ثبت هم زمان تصاویر تصویربرداری تشدید مغناطیسی و سیگنال های الکتروآنسفالوگرام در حین انجام تکلیف شناختی نقاط تصادفی متحرک برای سنجش میزان اطمینان در تصمیم گیری ادراکی تشکیل شده است با یادگیری مدل می توان از داده های سیگنال های الکتروآنسفالوگرام در آینده به طور مستقل استفاده کرد. هدف این پژوهش بازسازی تصاویر تصویربرداری تشدید مغناطیسی کارکردی با استفاده از سیگنال های الکتروآنسفالوگرام است این پژوهش کاربردی است که بر روی داده های ثبت شده هم زمان صورت پذیرفته است. روش کار: داده های الکتروآنسفالوگرام به عنوان ورودی مدل و داده های تصاویر تصویربرداری تشدید مغناطیسی به عنوان خروجی مدل در نظر گرفته شده و مدل یاد می گیرد که چطور از داده هایی با قالب ورودی، داده هایی از جنس قالب خروجی تولید نماید. قبل از ورود داده ها به مدل داده های ورودی برای بالا رفتن دقت مدل با حذف آرتیفکت ها با روش fastICA و تبدیل شدن به ماتریس گرامیان پیش پردازش می شود. یافته ها: مدل نسبت به سایر روش ها برتری های مناسبی را در زمان آموزش و دقت مدل نشان داده است و مدل عمیق یادگیر کانولوشنی پیشنهادی با دقت مطلوبی موفق به شبیه سازی تصاویر تصویربرداری تشدید مغناطیسی از روی سیگنال های الکتروآنسفالوگرام گردید. نتیجه گیری: با استفاده از مدل عمیق یادگیر کانولوشنی پیشنهادی می توان به ارتباط بین فضای ساختاری و فضای رفتاری مغز پی برد و آن را جهت مطالعه هر بخش، پیاده سازی نمود.