مطالب مرتبط با کلیدواژه

Data Augmentation


۱.

CoReHAR: A Hybrid Deep Network for Video Action Recognition(مقاله علمی وزارت علوم)

تعداد بازدید : ۲۳۱ تعداد دانلود : ۱۱۳
Automating the processing of videos in applications such as surveillance, sport commentary and activity detection, human-machine interaction, and health/disability care is crucial to their correct functioning. In such video processing tasks, recognition of various human actions is a pivotal component for the correct understanding of videos and making decisions upon it. Accurately recognizing human actions is a complex process, demanding high computing capabilities and intelligent algorithms. Several factors, such as object occlusion, camera movement, and background clutter, further challenge the task and its accuracy, essentially leaving deep learning approaches the only viable option for properly detecting human actions in videos. In this study, we propose CoReHAR, a novel Human Action Recognition method that employs both deep Convolutional and Recurrent neural networks on raw video frames. Using the pre-trained ResNet152 CNN, deep features are initially extracted from video frames. The sequential information of the frames is then learned using DB-LSTM RNN. Multiple stacked layers in forward and backward passes of the DB-LSTM provide increased network depth for higher accuracy. A number of techniques are also applied to improve CoReHAR’s processing speed on heterogeneous GPU-enabled systems. The proposed method is evaluated using PyTorch, and is compared to the state-of-the-art methods, showing a considerable efficiency increase, with nearly 95% recognition accuracy measured as an average over all splits of the challenging UCF101 dataset.
۲.

Learning an Efficient Text Augmentation Strategy: A Case Study in Sentiment Analysis(مقاله علمی وزارت علوم)

نویسنده:
تعداد بازدید : ۲۶ تعداد دانلود : ۱۵
Contemporary machine learning models, like deep neural networks, require substantial labeled datasets for proper training. However, in areas such as natural language processing, a shortage of labeled data can lead to overfitting. To address this challenge, data augmentation, which involves transforming data points to maintain class labels and provide additional valuable information, has become an effective strategy. In this paper, a deep reinforcement learning-based text augmentation method for sentiment analysis was introduced, combining reinforcement learning with deep learning. The technique uses Deep Q-Network (DQN) as the reinforcement learning method to search for an efficient augmentation strategy, employing four text augmentation transformations: random deletion, synonym replacement, random swapping, and random insertion. Additionally, various deep learning networks, including CNN, Bi-LSTM, Transformer, BERT, and XLNet, were evaluated for the training phase. Experimental findings show that the proposed technique can achieve an accuracy of 65.1% with only 20% of the dataset and 69.3% with 40% of the dataset. Furthermore, with just 10% of the dataset, the method yields an F1-score of 62.1%, rising to 69.1% with 40% of the dataset, outperforming previous approaches. Evaluation on the SemEval dataset demonstrates that reinforcement learning can efficiently augment text datasets for improved sentiment analysis results.