Salima Baji Abdullah

Salima Baji Abdullah

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Network Slicing for Customizing 5G Networks for Industry-Specific Needs(مقاله علمی وزارت علوم)

کلیدواژه‌ها: 5G Network slicing industry-specific networks Customization Virtualization low-latency orchestration slice isolation Autonomous Systems telecommunications

حوزه‌های تخصصی:
تعداد بازدید : ۴ تعداد دانلود : ۵
Background: Network slicing has turned out to be one of the key enablers in the 5G networks due to the ability to support the diverse applications such as ultra reliable and low latency communications for the self-driving cars or IoT-like massive machine type communications. Prior expeditions lacked integrated tools for the dynamic assignment and allocation of resources and no possibility for maintaining constant QoS. Objective: In this article, the primary aim is to synthesis and test a reinforcement learning–driven slicing framework in order to orchestrate the resources of the three types of slices – URLLC, mMTC, and eMBB. This is to improve the performance of the sliced resource, ensure high availability, and minimize competition of the resources in multi-tenant scenarios in 5G networks. Methods: The proposed study design includes a focus on the key stakeholders and their needs for requirements gathering and an experimental field for actual implementation. Resource distribution is guided by the reinforcement learning algorithms by trying to minimize a cost function which incorporates the relation between the latency, isolation, throughput and energy expended. Using a number of runs, quality of performance is monitored to enable assessment of stability as well as response rates. Results: Experimental results show that the proposed framework achieves a lower level of latency violations and capacity oversubscription compared to heuristic methods. Furthermore, it consistently achieves nearly 2.5X better throughput for telemedicine slices and guarantees less than 5 ms latency for time-sensitive services during dynamic traffic conditions. Conclusion: The study shows how reinforcement learning can be effective and applied for end-to-end 5G network slicing. This sort of adaptive orchestration can increase service dependability while optimising overhead and herald instantly climbable multi-tenant networks compatible with various industries
۲.

Advancing Sustainability in IT by Transitioning to Zero-Carbon Data Centers(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Artificial Intelligence Network Security Autonomous Threat Response Machine Learning Cybersecurity deep learning Anomaly Detection Threat Mitigation Real-Time Security AI-Driven Systems (AI)

حوزه‌های تخصصی:
تعداد بازدید : ۶ تعداد دانلود : ۳
Cyber threats are changing constantly and these days more than 560,000 new malware varieties are launched daily, which means that rudimentary measures of protecting networks from attacks cannot be of much help in handling real time threats. Single-static security control and manual intervention are insufficient to address APTs, Zero Day, and high-volume DDoS attacks. This is where the application of AI in network security lays its foundation, where real time threat response programs become possible where they are trained to automatically identify, categorize, and mitigate highly complex attacks without requiring massive amount of time and effort. The changing role of AI in network security is examined in this work since it can contribute to the improvement of threat detection, decrease response time, and minimize reliance on human factors. This research reviews more than 150 AI-based security frameworks, and 25 case studies of different industries including finance, healthcare, telecommunications, to assess the efficiency of machine learning and deep learning algorithms for autonomous threat response. The insights show that in challenging contexts, AI-based solutions provide anomaly detection scores of up to 97%, which are far higher than those obtained by conventional systems with average scores of 80%. The response time increased up to 75% as the AI systems responded under 3 seconds during the large scale cyberattack simulation operations. Significant achievement of scalability was across networks with number of nodes more than ten thousand nodes at 90% reliability in different threat scenarios. These findings underscore the importance of AI as the cornerstone of today’s cybersecurity: delivering accurate and timely threat coverage and demonstrating high resilience to threat evolution. However, issues like, algorithm bias, ethical concerns, and resistance to adversarial perturbation calls the need for research to develop effective measures towards the longevity of banking security systems integrated with AI. This study emphasizes the importance of search for new strategies to strengthen current digital environments against the increasing number of threats.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان