مدل کیفیت اقلام تعهدی با رویکرد الگوریتم مدیریت گروهی داده ها(مقاله علمی وزارت علوم)
حوزههای تخصصی:
مطالعه و توسعه معیارهای سنجش کیفیت سود و به طور ویژه کیفیت اقلام تعهدی یکی از موضوعات کلیدی در طی حدود سه دهه اخیر بوده است. ادبیات موضوعی حاکی از این است که معیارهای مبتنی بر رگرسیون خطی، عمدتا دارای خطای بالا بوده و لذا در سالهای اخیر، پژوهشهایی جهت اعمال الگوریتم های یادگیری ماشین صورت گرفته است. با این حال، بنیان گذاری این الگوریتم ها بر رویکرد جعبه سیاه، توسعه پذیری و همچنین درجه کاربردی بودن این مدلها را با محدودیت مواجه می نماید. لذا در این پژوهش از الگوریتم مدیریت گروهی داده ها که یک نوع مدلسازی جعبه سفید تلقی می شود جهت پیش بینی اقلام تعهدی استفاده شده است. نتایج به دست آمده با استفاده از داده های ۱۶۴ شرکت پذیرفته شده در بورس اوراق بهادار تهران طی سالهای ۱۳۸۵ تا ۱۳۹۷ و متغیرهای «تغییر در درآمد»، «داراییهای ثابت مشهود»، «جریانهای نقدی عملیاتی دوره جاری»، «جریانهای نقدی عملیاتی دوره گذشته» و «جریانهای نقدی عملیاتی دوره آتی»، حاکی از بهبود سطح خطای این مدلها نسبت به مدلهای خطی می باشد. با توجه به برتری مدل های خروجی تحقیق حاضر از نظر خطای پیش بینی نسبت به مدلهای رایج، یافته های این پژوهش می تواند توسط نهادهای نظارتی، تحلیلگران و حسابرسان در شناسایی موارد احتمالی تحریف اطلاعات مالی شرکتها مورد استفاده قرار گیرد.