ناهید صفری سیدآبادی

ناهید صفری سیدآبادی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

بازشناسی چهره با استفاده از مدل بهبود یافته HMAX(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مدل سلسله مراتبی HMAX بیومتریک تشخیص چهره یادگیری اتوماتا

حوزه های تخصصی:
تعداد بازدید : ۶۰۰ تعداد دانلود : ۳۴۶
مقدمه: سیستم شناسایی چهره، یک سیستم بیومتریک است که با استفاده از روش های هوشمند اتوماتیک، هویت انسان را بر اساس ویژگی های فیزیولوژیکی تشخیص می دهد و تایید می کند. هدف از این پژوهش، بهره گیری از مدل HMAX بهبود یافته برای بازشناسی چهره است. HMAX مدل بایولوژیکی الهام گرفته از سیستم بینایی انسان است. در این مقاله برای بهبود عملکرد مدل HMAX از اتوماتای یادگیر، بهره گرفته شده است. اتوماتا، دارای پارامترهای آزاد الفا و بتا است، قدرت پیشگویی در محیط های غیر قطعی را دارد و برای بالا بردن نرخ بازشناسی چهره انسان، به کار می آید. روش : ورودی مدل پیشنهادی، دیتا با استاندارد FEI ، شامل تصاویر ۲۰۰ فرد اهل برزیل است. پس از خواندن تصاویر با دستورات نرم افزار MATLAB ، تصاویر خوانده شده وارد مرحله استخراج ویژگی می شود. استخراج ویژگی با فیلترهای مدل HMAX انجام می شود. برای محاسبه نرخ بازشناسی چهره، ویژگی های استخراج شده با مدل HMAX ، دسته بندی می شود. پارامترهای مدل HMAX ، با اتوماتای یادگیر تعیین می شود. HMAX ، مدل سلسله مراتبی با ساختار چهار لایه ای C 2 , S 2 , C 1 , S 1 برای تشخیص ویژگی های ریز تصاویر است. به دلیل نمایش کارایی مدل پیشنهادی، مدل HMAX بهبود یافته با مدل رقیب الگوریتم Genetic ، مقایسه شده است. یافته ها: نتایج تحلیل دیتا ست، نرخ بازشناسی چهره را 08/94 درصد نشان داده است. نتیجه گیری : با توجه به نتایج این پژوهش مدل HMAX بهبود یافته، نرخ بازشناسی چهره را با دقت بالاتری نسبت به الگوریتم Genetic ، نشان داد.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان