مقایسه دقت پیش بینی سطح افشا با استفاده از الگوریتم های کلونی مورچه ها و تکامل تفاضلی در شرکتهای پذیرفته شده در بورس اوراق بهادر(مقاله علمی وزارت علوم)
منبع:
پژوهش های تجربی حسابداری سال هفتم تابستان ۱۳۹۷ شماره ۲۸
153 - 180
حوزه های تخصصی:
توجه ویژه به نیازهای اطاعاتی استفاده کنندگان صورت های مالی، یکی از رسالت های اصلی گزارشگری می باشد و در این راستا افشای مناسب و کامل اطلاعات نقش اساسی را دارد. هدف این تحقیق بررسی این موضوع است که آیا می توان کیفیت افشای شرکتی را بر اساس مدل های مبتنی بر یادگیری ماشین کشف کرد. در این تحقیق امتیازبندی سطح افشای شرکت های بورس ایران توسط سازمان بورس و اوراق بهادار به عنوان نماینده سطح افشای شرکتی در نظر گرفته شده و برای پیش بینی از مدل الگوریتم های کلونی مورچگان و تکامل تفاضلی استفاده شده است. برای این منظور 171 شرکت عضو بورس اوراق بهادار تهران طی دوره زمانی 1389-1393 مورد مطالعه قرار گرفتند. در این تحقیق با استفاده از نرم افزار متلب اقدام به پیش بینی کیفیت افشای شرکتی شده است. نتایج برازش الگوریتم های کلونی مورچگان و تکامل تفاضلی نشان می دهد که این دو الگوریتم با دقت بالای 95 درصد توانایی پیش بینی مدیریت سود را دارند. در واقع نتایج مبین آن است که مدل کلونی مورچه ها توانایی بیشتری (خطای 3. 316 درصد) در پیش بینی مدیریت سود نسبت به مدل تکامل تفاضلی (خطای 4. 139 درصد) دارد.