مقایسه کارایی روش های جنگل تصادفی و ماشین بردار پشتیبان، به منظور پتانسیل یابی ذخایر معدنی مس؛ مطالعه موردی دهج - بزمان (مقاله علمی وزارت علوم)
درجه علمی: نشریه علمی (وزارت علوم)
آرشیو
چکیده
ب ا توج ه ب ه وس عت زی اد کش ور ایران و گس تردگی من اطق پتانس یل دار ذخ ایر مع دنی (وج ود کمربن د ولک انیکی ارومی ه دخت ر) و ل زوم شناس ایی و م دیریت ص حیح ای ن ذخ ایر، اس تفاده از سیستم اطلاع ات مکانی به همراه مدل های پیش بینی کننده داده و دانش محور، نقش بس یار مهمی به منظور تهیه نقشه پتانسیل از احتمال یافتن ذخایر معدنی در یک مکان خاص دارد. هدف این تحقیق پیش بینی ذخایر مس پورفیری در منطقه دهج - بزمان استان کرمان با استفاده از دو روش جنگل ها ی تصادفی[1] و ماشین بردار پشتیبان[2] است. به این منظور، از یک پایگاه داده مکانی متشکل از نقشه ها ی جنس واحدهای سنگی، ساختارها، آلتراسیون، ژئوشیمی، ژئوفیریک و موقعیت 24 کانسار مس پورفیری شناخته شده در منطقه استفاده شد. با توجه به نتایج حاصل شده، مدل جنگل ها ی تصادفی توانست با صحت 93.33 درصد مناطق امید بخش ذخایر مس پورفیری را پیش بینی کند. همچنین، در نقشه پتانسیل بدست آمده از این مدل، مناطق هدف 14 درصد از منطقه مورد مطالعه را در برگرفته است، که در آن 92 درصد ذخایر شناخته شده مشخص شده اند. علاوه بر این، به منظور مقایسه نقشه پتانسیل ذخایر مس پورفیری منتج از روش جنگل های تصادفی، از روش ماشین بردار پشتیبان و روش های دانش محور همپوشانی شاخص و منطق فازی استفاده شد. در نقشه های پتانسیل ذخایر مس پورفیری بدست آمده از سه روش ماشین بردار پشتیبان، همپوشانی شاخص و منطق فازی به ترتیب مناطق هدف 17،16،14 درصد از منطقه مورد مطالعه را در برگرفته است که در آن ها 79،83،87 درصد ذخایر شناخته شده وجود دارند. براساس نتایج این تحقیق، مدل جنگل ها ی تصادفی از نظر صحت پیش بینی از کارایی بالاتری نسبت به مدل های دیگر برخوردار بوده و مدل های ماشین بردار پشتیبان، همپوشانی شاخص و منطق فازی به ترتیب در رتبه های بعدی قرار دارند. [1] Random Forest (RF)[2] Support Vector Machine (SVM)Comparison of efficiency of random forest and support vector machine methods for mineral potential mapping of copper deposits, - Case study: Dahaj-Bazman
Introduction:The exploration and preparation of the potential map of mineral reserves requires the use of various methods and techniques, based on the geological and mining knowledge of the investigated area, and the use of predictive models of mineral potential (Bonham-Carter, 1994; Carranza et al., 2008a). According to the investigations, the common models of map integration that are used in the discovery of mineral reserves in the initial exploration stage include index overlap model, fuzzy operators, weighted indicators and smart methods such as random forests and artificial networks. Determining the values of weights and scores that show the relative importance of the effective factors is the primary requirement in combining the maps and preparing the mineral potential map (Agterberg, 1992; Brown et al., 2000).The purpose of this research is to prepare a potential map of copper deposits in Dehj-Bazman region using two methods of random forest and support vector machine. In addition, in order to compare the potential map of porphyry copper reserves resulting from the random forest method, the support vector machine method and the knowledge-based methods of index overlap and fuzzy logic were used.Materials & Methods:The area studied in this research is a part of the magmatic belt of Kerman region, known as the Dehj-Sardouye belt. The information layers controlling mineralization in Dehj-Bazman area include rock units, structures, alterations, geochemistry, geophysics and copper deposits. In practical applications of machine learning algorithms, mineral potential mapping is essentially a bimodal classification problem, such that each undiscovered area is classified as prospective or non-prospective according to some combination of mapping criteria (Zuo, 2011). The final results are a set of predictive maps that show target areas with high ore formation potential.In order to model, training was done. Before training the random forest model, the input data set and the target variable should be prepared and then the model should be trained. The target variables for entering the random forest model and support vector machine were determined as deposit points (values of 1) and non-deposit points (values of 0). Then the genetic algorithm was used to adjust the parameters.Evaluation of the predictive performance of random forest model and support vector machine can be described by the ambiguity matrix. In this matrix, there are four components, which are defined as: (1) a deposit sample that is correctly classified as a deposit (TP); (2) a deposit sample incorrectly classified as a non-deposit sample (FN), (3) a non-deposit sample correctly classified as a non-deposit sample (TN), and (4) a non-deposit sample that is wrongly classified as a deposit sample (FP) (Liu et al., 2005; Tien Bui et al., 2016): (8) (9) (10) (11) (12) After training and evaluating different models, the best model was obtained by adjusting different parameters and it was used to integrate factor maps in order to predict areas with high potential of porphyry copper deposits. Also, knowledge-based methods of fuzzy logic and index overlap were used to combine factor maps to compare with the results of intelligent methods.Results & Discussion:At this stage, the desired information layers were collected and prepared in the GIS environment, and then factor maps were prepared. Accuracy, sensitivity, specificity, predicted positive value, predicted negative value, kappa index and OOB error were used to evaluate the performance of random forest model and support vector machine. Also, the importance of the predictor variables in the random forest model was evaluated through the mean decrease in accuracy and the mean decrease in node impurity or the Gini impurity index (Breiman, 2001). According to the results, the most important predictor in the random forest model is the geochemical map, while the structures factor has the least impact in predicting the preparation of the mineral potential map with the final random forest model.In the potential maps of porphyry copper deposits obtained from two methods of random forest and support vector machine, the target areas cover 14% of the studied area, in which there are 92% and 87% of known deposits, respectively. Finally, the efficiency of machine learning methods and knowledge-based methods were compared. In order to produce porphyry copper potential map with knowledge-based methods, the judgment of expert experts was used to assign weights to each criterion map. For this purpose, weights of 0.3, 0.25, 0.25, 0.1, 0.1 were assigned to produce maps of alteration factor, geochemistry, geology, geophysics and structures respectively. In the potential map obtained from the method of index overlap and fuzzy logic (fuzzy sum), the areas predicted as copper mines cover 16 and 17 percent of the studied area, respectively, in which 83 and 79 percent of the existing mines are located.Conclusion:This research was conducted with the aim of evaluating and comparing the effectiveness of random forest method and support vector machine method and knowledge-based methods to prepare porphyry copper potential map of Dehaj-Bozman region of Kerman province. Based on the results, the random forest model works well in the field of porphyry copper potential map preparation with geochemical, geophysical, geological, alteration and structures datasets. In addition, the random forest algorithm can estimate the importance of factor maps.The results of this research show that the geochemical factor map is the most important and the structure factor map is the least important in predicting the data-driven model of random forests. This estimate of importance is consistent with geological knowledge about porphyry copper mineralization in Dehj-Buzman region. In order to produce porphyry copper potential map with knowledge-based methods, the judgment of expert experts was used to assign weights to each criterion map. According to the obtained results, the performance of the random forest model is better than the vector machine model, and also, the performance of the support vector machine model is better than the knowledge-based methods.