آرشیو

آرشیو شماره ها:
۴۶

چکیده

پژوهش حاضر کوشیده است مفهوم بنیامینی آئورا را در نظریه دیفرانسیل لایبنیتس و برداشت ویژه دلوز از تکینگی، ریشه یابی نموده و بر اساس آن توضیح دهد. دلوز بواسطه اثرپذیری خود از لایبنیتس، برداشتی ویژه از تکینگی ریاضیاتی ارائه می دهد که می توان آن را دقیقا معادل اکسترمم در حساب عمومی منحنی ها دانست. با متقاطع نمودن مفهوم آئورا با نظریه دیفرانسیل، سپس کشف هم ارزی های مفهومی، شناسایی نودها (گره گاه های تقاطع) و تولید یک بلوک تلاقی، نشان داده شد که می توان آئورا را به مثابه یک تکینگی در منحنی های مکان- زمان زیباشناختی شناسایی نموده و توضیح داد. سپس بر اساس این روش تجربی، تلاش گردید طرح اولیه و پیشنهادی یک زیبایی شناسی ماتریالیستی، به عنوان دستاورد جنبی پژوهش، صورت بندی شود. بر اساس این طرح، ایده اصلی زیبایی شناسی ماتریالیستی پیشنهادی، متقاطع نمودن نظام زیبایی شناختی با نظام های علمی برای تولید بلوک ها و مناطق تلاقی ست، به نحوی که بتوان مفاهیم زیباشناختی مستقر در این بلوک های تلاقی را به صورت توابع علمی- مادّی بازسازی نمود. برای تفهیم این موضوع، از نظریه مجموعه ها در ریاضیات کمک گرفته شد.

Aura and Differential Singularity (Towards a Materialist Aesthetics)

Aesthetic concepts explaining with scientific functions, can be an inspiring idea to lead to a new and special form of aesthetics. A form of aesthetics that as its most important work, produces relations between the aesthetic dimension as the material form of the artwork, and material functions in natural science. Establishing such relationships, may first and foremost seem like an idealistic simulation; An effort that is supposed to reduce the latter to an allegory of the first system by finding similarities between two incongruous scientific and aesthetic systems. However, it should be noted that such discussions are not aimed at producing allegorical relationships between scientific and aesthetic systems, and they have no relation with the subsequent reductionism, but by maintaining the independence between these two systems from each other, they try to move in the boundaries, regions and intersection blocks between them, and rooting the modern aesthetic concepts in the scientific systems, or by discovering and even "inventing" these intersection blocks and establishing material relations, try to explain aesthetic concepts by scientific systems. Therefore, the aesthetic concepts located in the intersection block will no longer be an allegory of scientific functions, but they are nothing except a slice of these functions but with a different formulation. Because of their adherence to scientific procedures in producing material relations between the material form of the artwork and the material functions of natural science, such discussions can be considered as a form of materialist aesthetics. As a methodological proposal, materialistic aesthetics can start its work by discovering the trace of a scientific system in an aesthetic system, or in other words, by reconstructing that intersection block that is achieved by intersecting two sets. In this regard, the discovery and reconstruction of the relationship between the Frankfurt School’s critical aesthetics and Leibniz's mathematics can be an outstanding and inspiring example.This research has tried to root Benjamin's concept of Aura in Leibniz's differential theory and Deleuze's special understanding of singularity, and explain Aura based on it. Due to his influence on Leibniz, Deleuze offers a special understanding of mathematical singularity, which can be considered exactly equivalent to extreme point in the general calculus of curves. By intersecting the concept of Aura with differential theory, then discovering conceptual equivalences, identifying nodes, and producing a junction block, it was shown that Aura can be considered as a singularity on the aesthetic space-time curves. Then, based on this experimental method, an attempt was made to formulate the initial and proposed design of a materialist aesthetic as a secondary achievement of the research. Based on this plan, the main idea of the proposed materialistic aesthetics is to intersect the aesthetic system with the scientific systems to produce intersection blocks and areas; in such a way that the aesthetic concepts established in these intersecting blocks can be reconstructed as scientific-material functions. To understand this issue, help was taken from the theory of sets in mathematics.

تبلیغات