مدل های پیش بینی شدت تصادف های موتورسیکلت در بزرگراه های شهری با استفاده از رگرسیون لوجستیک و شبکه های عصبی مصنوعی(مقاله علمی وزارت علوم)
حوزه های تخصصی:
با توجه به خطرپذیر بودن تردد موتورسیکلت ها در معابر و بزرگراه های شهری و خسارات وارده، در این مقاله بر آن شدیم با ارایه مدل پیش بینی شدت تصادف، به بررسی عوامل موثر در شدت تصادف موتورسیکلت ها بپردازیم، تا بتوان با شناسایی عوامل موثر در شدت این تصادف ها و با اتخاذ سیاست های عملکردی مناسب شدت این تصادف ها را تا حد مطلوبی کاهش داد. بر این اساس آمار مربوط به تصادف موتورسیکلت در بزرگراه های شهری تهران از سال 1382 تا 1385 از بانک اطلاعاتی اداره راهنمایی و رانندگی شهر تهران، همچنین داده های مربوط به مشخصات ترافیکی از قبیل حجم ترافیک و سرعت جریان ترافیک از سازمان حمل و نقل و ترافیک تهران و مشخصات هندسی بزرگراه ها از شرکت مطالعات جامع حمل و نقل و ترافیک تهران جمع آوری گردید و در یک بانک اطلاعاتی واحدی که شامل 536 مورد تصادف می باشد، مورد بررسی قرار گرفت.در این مقاله، شدت تصادف های موتورسیکلت در دو حالت «خسارت جانی» و «خسارت مالی» طبقه بندی شده است و از دو روش مدل سازی ریاضی با استفاده از نرم افزار SPSS و مدل سازی با استفاده از شبکه های عصبی مصنوعی برای مدل سازی استفاده شده است.نتایج به دست آمده نشان می دهد که استفاده از شبکه های عصبی مصنوعی در مدل سازی شدت تصادف های موتورسیکلت جواب های قابل قبولی را ارایه داده است. همچنین با مدل سازی، عواملی که تاثیر بیشتری بر روی افزایش و کاهش شدت تصادف ها دارند، شناسایی شده اند.