میلاد نیرومند جدیدی

میلاد نیرومند جدیدی

مدرک تحصیلی: دانشجوی کارشناسی ارشد مهندسی سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۵ مورد از کل ۵ مورد.
۱.

ارزیابی و بهبود عملکرد الگوریتم شبیه سازی تبرید به منظور تهیه نقشه پوشش اراضی در سطح زیرپیکسل با استفاده از تصاویر چندطیفی(مقاله علمی وزارت علوم)

کلید واژه ها: پوشش اراضی زیرپیکسل طبقه بندی نرم الگوریتم شبیه سازی تبرید تابع خنک سازی ضریب بزرگنمایی

حوزه های تخصصی:
تعداد بازدید : ۴۹۹ تعداد دانلود : ۳۰۶
یکی از چالش های بسیار مهم در تهیه نقشه پوشش اراضی با استفاده از تصاویر سنجش از دور، مشکل مربوط به پیکسل های مخلوط است. با توسعه روش های تجزیه اختلاط طیفی و طبقه بندی کننده های نرم، امکان برآورد سهم کلاس ها در سطح زیرپیکسل فراهم می آید و برچسب های چندگانه به پیکسل ها اختصاص داده می شود. با وجود این، تولید نقشه پوششی در سطح زیرپیکسل نیازمند جانمایی مکانی زیرپیکسل ها است. در سال های اخیر، روش های تهیه نقشه در سطح زیرپیکسل توسعه یافته اند و با استفاده از نتایج طبقه بندی کننده های نرم و بهره گیری از مفاهیم وابستگی مکانی، آرایش مکانی زیرپیکسل ها را بهینه سازی می کنند. در این تحقیق، دقت کلی الگوریتم شبیه سازی تبرید برای تهیه نقشه پوششی در سطح زیرپیکسل مورد ارزیابی قرار گرفته و همچنین، مکانیزم جدیدی در این روش، برای تولید پاسخ های جدید در هر مرحله از الگوریتم پیشنهاد شده و با نتایج روش موجود مقایسه شده است. از دیگرسو، پارامترهای مؤثر بر عملکرد الگوریتم مانند ضریب بزرگنمایی، نوع تابع خنک سازی و تکرارهای ایستا و پویا در عملکرد الگوریتم بررسی شده اند. در فرایند ارزیابی دقت کلی الگوریتم، دو روش مستقل از خطای طبقه بندی نرم و وابسته به این خطا لحاظ شده است. براساس نتایج، افزایش ضریب بزرگنمایی موجب کاهش دقت الگوریتم شبیه سازی تبرید شده و همچنین، تابع خنک سازی هندسی به لحاظ دقت و زمان اجرای الگوریتم، به منزله تابع بهینه انتخاب شده است. از طرف دیگر، تکرارهای پویا نیز، در مقایسه با حالت ایستا دقت بیشتری داشته است. روش پیشنهادی برای تولید پاسخ های جدید در الگوریتم شبیه سازی تبرید دستاورد مهم تحقیق به شمار می آید که دقت کلی را به نسبت روش موجود، افزایش داده و همچنین، زمان اجرای الگوریتم را تا 50% کاهش داده است. بیشترین دقت کلی الگوریتم براساس روش پیشنهادی و مستقل از خطای طبقه بندی نرم 97/94% برآورد شد.
۲.

استخراج پیکسل های خالص با استفاده از فضای ویژگی مبتنی بر پارامترهای فیزیکی به منظور برآورد پوشش اراضی در سطح زیرپیکسل(مقاله علمی وزارت علوم)

کلید واژه ها: پارامتر فیزیکی پوشش اراضی مدل اختلاط طیفی پیکسل خالص

حوزه های تخصصی:
تعداد بازدید : ۱۴۲۶ تعداد دانلود : ۶۷۵
تخمین دقیق سطح پوشش اراضی، نقش بسیار مهمی را در مدیریت بهینه محیط جغرافیایی ایفا می نماید. در این راستا، روش های مختلف طبقه بندی تصاویر سنجش از دور به منظور استخراج پوشش اراضی توسعه یافته اند. با توجه به ضعف روش های طبقه بندی سخت در خصوص پیکسل های مخلوط، استفاده از روش های طبقه بندی نرم به منظور برآورد سهم تعلق کلاس های مختلف پوشش اراضی در پیکسل های مخلوط مورد توجه قرار گرفته است. مدل اختلاط طیفی خطی یکی از روش های رایج در این حوزه محسوب می گردد. دقت این مدل به شدت به کیفیت پیکسل های خالص معرفی شده به آن وابسته بوده و از طرفی استخراج این پیکسل ها معمولا دشوار و چالش برانگیز می باشد. در تحقیق حاضر، استفاده از پارامترهای فیزیکی (درخشندگی، رطوبت و سبزینگی) برای استخراج پیکسل های خالص پیشنهاد گردیده است. به منظور ارزیابی کیفیت پیکسل های خالص استخراج شده، از معیارهای ارزیابی مدل اختلاط طیفی غیرشرطی استفاده شده است. بدین منظور با پیاده سازی این مدل در منطقه مطالعاتی، RMSE کل تصویر 68/2 و تعداد پیکسل های با سهم تعلق منفی یا بزرگتر از یک، 43/4 درصد برآورد گردید. بدین ترتیب روش پیشنهادی دقت مطلوبی را در نتایج مدل اختلاط طیفی خطی و بدون اعمال هیچ شرطی در این مدل فراهم نموده است.
۳.

افزایش دقت اطلاعات تغییرات کاربری اراضی با استفاده از نتایج طبقه بندی نرم تصاویر سنجش از دور (مطالعة موردی: حوضة آبریز اهرچای)(مقاله علمی وزارت علوم)

۴.

ارزیابی و توسعه الگوریتم معاوضه پیکسلی به منظور تهیه نقشه پوشش اراضی در سطح زیرپیکسل با استفاده از تصاویر چندطیفی(مقاله علمی وزارت علوم)

حوزه های تخصصی:
تعداد بازدید : ۴۸۲ تعداد دانلود : ۲۶۷
تصاویر سنجش از دور معمولاً به صورت ترکیبی از پیکسل های خالص و مخلوط اند. در روش های طبقه بندی سخت، پیکسل های مخلوط به کلاس دارای بیشترین اطمینان تعلق نسبت داده می شوند. بدین ترتیب به علت تک برچسبی بودن نتایج طبقه بندی سخت، اطلاعات در سطح زیرپیکسل نادیده گرفته می شود. روش های طبقه بندی نرم که برای حل این مشکل شکل گرفته اند، برآورد سهم کلاس های مختلف را برای هر یک از پیکسل ها فراهم می آورند. البته این نوع طبقه بندی کننده ها هیچ گونه اطلاعاتی را در مورد آرایش مکانی کلاس های مختلف در داخل پیکسل ها ارائه نمی کنند. الگوریتم معاوضه پیکسلی با استفاده از نتایج طبقه بندی نرم و براساس بیشینه کردن وابستگی مکانی زیرپیکسل ها، امکان تهیه نقشه پوششی را در سطح زیرپیکسل فراهم می سازد. الگوریتم پایه این روش برای حالت باینری است. در تحقیق حاضر به منظور تولید نقشه پوششی، الگوریتم باینری معاوضه پیکسلی برای حالت چندمتغیری ایجاد گردیده و دقت این الگوریتم در دو حالت مستقل از خطای طبقه بندی نرم و وابسته به آن مورد ارزیابی قرار گرفته است. به علاوه، تأثیر پارامترهای مختلف مانند ضریب بزرگنمایی، سطح همسایگی و تابع وزن نیز در عملکرد این الگوریتم بررسی شده است. براساس نتایج تحقیق، دقت کلی الگوریتم معاوضه پیکسلی، بسیار وابسته به دقت ورودی الگوریتم (نتایج طبقه بندی نرم است. دستاورد دیگر تحقیق، این بود که مشخص گردید با افزایش ضریب بزرگنمایی، دقت الگوریتم کاهش می یابد. دیگر اینکه سطح همسایگی دوم و توابع معکوس فاصله و مجذور معکوس فاصله، بیشترین دقت را به همراه دارند. با در نظر گرفتن ضریب بزرگنمایی کمتر از 5، دقت کلی الگوریتم در فرایند بهینه سازی آرایش مکانی زیر پیکسل ها بیشتر از 90 درصد برآورد گردید.
۵.

روشی نو برای انتخاب ویژگیهای بهینه و افزایش قدرت تفکیک مکانی در نتایج طبقه بندی تصاویر پلاریمتری راداری(مقاله علمی وزارت علوم)

کلید واژه ها: انتخاب ویژگی استخراج ویژگی تصاویر پلاریمتری راداری فضای پدیده طبقه بندی نرم SRM جا به جایی پیکسلی

حوزه های تخصصی:
تعداد بازدید : ۲۰۷۰ تعداد دانلود : ۹۹۳
استفاده از داده های پلاریمتری راداری نقش تعیین کننده ای در شناسایی اهداف زمینی دارد و اطلاعات جامعی در مورد ویژگیهای هندسی و همچنین ماهیت اهداف، با بهره گیری از این نوع داده ها استخراج شدنی است. از جمله مشکلات موجود در زمینه طبقه بندی این نوع داده ها، انتخاب ویژگیهای بهینه است. با توجه به اهمیت این موضوع، در تحقیق حاضر روشی نو براساس نگاشت ویژگیهای استخراج شده به فضای پدیده ارائه شده است. به عنوان یکی از نتایج تحقیق، شاخص بهینگی در فضای پدیده برای انتخاب ویژگیهای بهینه تصاویر پلاریمتری راداری ارائه گردید. از طرف دیگر، یکی از محدودیت های موجود در زمینه استخراج اطلاعات دقیق مکانی، اختلاط مکانیسم های بازپراکنش در سطح پیکسل است. بنابراین، استفاده از طبقه بندیکننده های نرم به منظور تجزیه این نوع اختلاط ها ضروری است. اینکه تضمینی برای منفی نشدن سهم کلاس ها و همچنین واحد شدن مجموع سهم کلاس ها در هر پیکسل وجود ندارد، خود از چالش های طبقه بندیکننده های نرم است، که در این تحقیق با تلفیق طبقه بندیکننده نرم و الگوریتم نظارت نشده استخراج عناصر خالص مرتفع گردید. طبقه بندی کننده های نرم به رغم افزایش اطلاعات ماهیتی در نتایج طبقه بندی، توان جانمایی کلاس ها را در سطح زیرپیکسل ندارند و فقط سهم تعلق کلاس ها را در هر پیکسل تعیین میکنند. بدین منظور الگوریتم های (SRM) Super Resolution Mapping برای افزایش قدرت تفکیک مکانی در سطح نتایج طبقه بندی نرم شکل گرفته و پرورده شده اند. در این تحقیق نیز از روش جابه جایی پیکسلی به منظور تهیه نقشه در سطح زیرپیکسل استفاده شده و فرایندی غیرتصادفی برای جانمایی اولیه زیرپیکسل ها ارائه گردیده است. براساس نتایج تحقیق، روش پیشنهادی برای انتخاب ویژگیهای بهینه در مقایسه با روش مبتنی بر الگوریتم ژنتیک نتایج بهتری را به دست داد. در ادامه با استفاده از ویژگیهای به دست آمده، سه الگوریتم تجزیه اختلاط طیفی خطی (LSU)، شبکه عصبی چندلایه (MLP)) و ماشین بردار پشتیبان (SVM) برای طبقه بندی نرم منطقه مطالعاتی در سه کلاس مسکونی، پوشش گیاهی و زمین بایر اعمال گردید. با ارزیابی آنها، SVM به عنوان طبقه بندیکننده بهینه شناسایی شد و نتایج آن در فرایند جانمایی کلاس ها در سطح زیرپیکسل به کار رفت. در نهایت با پیاده سازی الگوریتم جابه جایی پیکسلی، تصاویر پلاریمتری راداری در سطح زیرپیکسل طبقه بندی شدند و قدرت تفکیک مکانی نتایج طبقه بندی نرم بهبود یافت.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان