امید برومند

امید برومند

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

Developing a Stock Market Prediction Model by Deep Learning Algorithms(مقاله علمی وزارت علوم)

کلید واژه ها: Stock Price Prediction Artificial Neural Networks deep learning Long Short-Term Memory Recurrent Neural Networks

حوزه های تخصصی:
تعداد بازدید : ۱۵ تعداد دانلود : ۸
For investors, predicting stock market changes has always been attractive and challenging because it helps them accurately identify profits and reduce potential risks. Deep learning-based models, as a subset of machine learning, receive attention in the field of price prediction through the improvement of traditional neural network models. In this paper, we propose a model for predicting stock prices of Tehran Stock Exchange companies using a long-short-term memory (LSTM) deep neural network. The model consists of two LSTM layers, one Dense layer, and two DropOut layers. In this study, using our studies and evaluations, the adjusted stock price with 12 technical index variables was taken as an input for the model. In assessing the model's predictive outcomes, we considered RMSE, MAE, and MAPE as criteria. According to the results, integrating technical indicators increases the model's accuracy in predicting the stock price, with the LSTM model outperforming the RNN model in this task.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان