رویکردها و ابزارهای پیش بینی هوشمند فازی در حوزه ارزهای دیجیتال(مقاله علمی وزارت علوم)
منبع:
اقتصاد مالی سال ۱۸ بهار ۱۴۰۳ شماره ۱ (پیاپی ۶۶)
277 - 302
حوزه های تخصصی:
سیستم های ترکیبی مبتنی بر شبکه های عصبی مصنوعی و سیستم های فازی مدل های مختلفی را برای پیشرفت علم ارائه می دهند از آنجا که آنها مدل هایی هستند که می توانند با آموزش عملی شبکه های عصبی و ظرفیت تفسیری سیستم های فازی کار کنند. لذا هدف این پژوهش، بررسی سیستماتیک مهمترین تئوری های پیش بینی ارز دیجیتال مبتنی بر مدل های ترکیبی فازی و شبکه های عصبی مصنوعی است مدل هایی که عمدتاً بر روش های نظارت شده جهت سنجش مدل های ترکیبی متمرکز هستند همچنین، این بررسی ، تاریخچه مدل های ترکیبی، ترکیبات و قابلیت های معماری ، پردازش داده ها و روش های سنجش آنها، ویژگی های مدل های برجسته(پیشرو) و کاربردهای آنها در پیش بینی ارز دیجیتال را نیز شامل می شود نتایج نشان می دهد که مدل های شبکه عصبی فازی و مشتقات آنها در پیش بینی ارز دیجیتال با دقت بسیار بالا و با قابلیت توجیه مناسب که در طیف وسیعی از حوزه های اقتصادی و علمی کاربرد دارد، کارآمد هستند