بهبود دقت شناسایی مزارع برنج با استفاده از تصاویر سری زمانی دمای سطح زمین ماهواره لندست-8 و الگوریتم های یادگیری ماشین(مقاله علمی وزارت علوم)
منبع:
اطلاعات جغرافیایی سپهر دوره ۳۲ بهار ۱۴۰۲ شماره ۱۲۵
53 - 66
حوزه های تخصصی:
برنج اصلی ترین محصول غذایی بیش از نیمی از مردم جهان است. نظارت بر سطح زیر کشت محصول برنج، نقش مهمی در برنامه ریزی های کشاورزی دارد. امروزه می توان با تکیه بر فن آوری سنجش از دور و روش های یادگیری ماشین، روش های مدیریتی را بهبود بخشید. تحقیق فوق با هدف شناسایی برنج در سال 2020 به کمک نقشه های سری زمانی شاخص های NDVI و LST استخراج شده از تصاویر لندست-8، با الگوریتم SVM در ایالت کالیفرنیا، انجام گرفته است. یکی از انگیزه های اصلی این تحقیق، بررسی قابلیت های نقشه های سری زمانی شاخص LST در کنار نقشه های سری زمانی شاخص NDVI به منظور بهبود دقت شناسایی مزارع برنج ، با الگوریتم SVM است. در گام اول از روش پیشنهادی پس از اخذ سری زمانی تصاویر لندست-8 و انجام تصحیحات رادیومتری و اتمسفری، نقشه های سری زمانی دو شاخص NDVI و LST تولید شد. در گام دوم، شناسایی مزارع برنج با الگوریتم طبقه بندی SVM در دو سناریوی وجود یا عدم وجود نقشه ی سری زمانی LST در کنار نقشه ی سری زمانی NDVI پیشنهاد شد. در نهایت از الگوریتم های طبقه بندی نزدیک ترین همسایگی، درخت تصمیم گیری، رگرسیون لجستیک و پرسپکترون چند لایه برای مقایسه ی روش پیشنهادی استفاده شد. نتایج حاصل از شاخص پیشنهادی باعث بهبود دقت کلی به مقدار متوسط 3.572 درصد و ضریب کاپا به مقدار متوسط 7.112 درصد در روش های شناسایی مزارع برنج هنگام بکار گیری همزمان نقشه های سری زمانی شاخص LST و NDVI با کاهش خطای نوع اول به کمک استخراج ویژگی های فصل رشد حرارتی (حذف کلاس های غیر برنج همچون پنبه، لوبیای سبز و ... از کلاس برنج) شد. همچنین الگوریتم ماشین بردار پشتیبان، بالاترین دقت کلی 94.28 درصد و ضریب کاپای 88.29 درصد را در شناسایی مزارع برنج از سایر مزارع کشاورزی، در مقایسه با سایر روش های مقایسه ای نشان داد. نتایج حاصل از روش های مقایسه ای کارآیی پایین الگوریتم درخت تصمیم گیری را در شناسایی لبه های مزارع برنج، نشان داد.