پایش و مدلسازی تغییرات الگوی توسعه شهری با استفاده از تصاویر ماهواره ای و مدل شبکه عصبی مصنوعی (مطالعه موردی بخش یک شهرستان رفسنجان)(مقاله علمی وزارت علوم)
حوزه های تخصصی:
مقدمه : استفاده بیش ازحد و نادرست از منابع طبیعی موجود، نیازمند افزایش ارزیابی اجزا منابع و بررسی تغییراتی است که درگذشته اتفاق افتاده است. بنابراین آشکارسازی، پیش بینی تغییرات لازمه مراقبت از یک اکوسیستم به ویژه در مناطقی با تغییرات سریع و اغلب بدون برنامه ریزی در کشور های درحال توسعه می باشد.
داده و روش : روش پژوهش حاضر از نظر هدف کاربردی و از حیث روش، توصیفی- تحلیلی است. و با استفاده از تکنیک های بصری و ترسیمی از تصاویر سنجنده های TM لندست 5 در سال های 1998،1992،1986، ETM+ لندست 7 در سال های 2010،2004 و سنجنده OLI لندست 8 در سال2016 بهره گرفته است. به علاوه از نقشه های رقومی منطقه برای بررسی تصحیح هندسی تصاویر و همچنین به عنوان داده های کمکی در تفسیر تصاویر و پیش بینی تغییرات، استفاده گردید. پس از تأیید کیفیت هندسی و رادیومتری تصاویر با توجه به ویژگی های منطقه، کاربری های موجود، با روش تفسیر تلفیقی تصاویر هر شش مقطع زمانی به چهار کلاس مناطق شهری، باغات پسته، اراضی بایر و نمکزار با الگوریتم حداکثر احتمال طبقه بندی شد و پس از اعتبار سنجی میانگین دقت کاپا 83 درصد و میانگین دقت کلی 89 درصد برای شش نقشه کاربری اراضی تولیدشده بدست آمد.
یافته ها : نقشه های کاربری اراضی تولید شده از کلاس بندی و پیش بینی شده از مدل ها در سال های 2016،2010،2004،1998 مقایسه و صحت آن با استفاده از شاخص کاپا ارزیابی شد. نتایج نشان داد میانگین دقت کاپا برای مدل شبکه عصبی76 درصد بود.
نتیجه گیری : نشان دهنده هماهنگی بین مقدار و مکان تغییرات واقعی و پیش بینی شده و درنتیجه عملکرد نسبتاً خوب برنامه LCM در پیش بینی تغییرات کاربری اراضی است.