سیما مشایخی

سیما مشایخی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Deep Learning Application in Rainbow Options(مقاله علمی وزارت علوم)

کلید واژه ها: deep learning European options Asian options Monte-Carlo simulation descent gradient method

حوزه های تخصصی:
تعداد بازدید : ۸۸ تعداد دانلود : ۷۶
Due to the rapid advancements in computer technology, researchers are attracted to solving challenging problems in many different fields. The price of rainbow options is an interesting problem in financial fields and risk management. When there is no closed-form solution to some options, numerical methods must be used. Choosing a suitable numerical method involves the most appropriate combination of criteria for speed, accuracy, simplicity and generality. Monte Carlo simulation methods and traditional numerical methods have expensive repetitive computations and unrealistic assumptions on the model. Deep learning provides an effective and efficient method for options pricing. In this paper, the closed-form formula or Monte-Carlo simulation are used to generate data in European and Asian rainbow option prices for the deep learning model. The results confirm that the deep learning model can price the rainbow options more accurately with less computation time than Monte-Carlo simulation.
۲.

Alternating Direction Explicit Method for a Nonlinear Model in Finance(مقاله علمی وزارت علوم)

نویسنده:

کلید واژه ها: Black-Scholes Model Barles and Soner Model Alternating Direction Explicit Methods Finite Difference Methods

حوزه های تخصصی:
تعداد بازدید : ۲۶۷ تعداد دانلود : ۱۱۴
In this article, at first standard linear Black-Scholes model and then some nonlinear Black-Scholes models will be considered and thereupon alternating direction explicit (ADE) method is applied firstly for solving the standard Black-Scholes model and then for Barles and Soner model which is one of the most complete and comprehensive nonlinear Black-Scholes models. Furthermore, the stability of this method has been considered and its accuracy will be compared with other numerical methods such as finite difference methods. Since in solving nonlinear Black-Scholes models by the ADE methods, we need to solve only some scalar nonlinear equations instead of a full nonlinear system of equations that we should solve in implicit methods, so this method can be a suitable choice for solving such models.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان