بهزاد وثوقی

بهزاد وثوقی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۳ مورد از کل ۳ مورد.
۱.

ارزیابی کارائی مدل شبکه عصبی حافظه کوتاه مدت طولانی در پیش بینی سری زمانی یونوسفر و مقایسه آن با مدل های GRNN، GIM و NeQuick(مقاله علمی وزارت علوم)

کلید واژه ها: یونوسفر TEC NeQuick LSTM GIM

حوزه های تخصصی:
تعداد بازدید : ۱۱۰ تعداد دانلود : ۱۱۴
در این مقاله ایده استفاده از مدل شبکه عصبی حافظه کوتاه مدت طولانی (LSTM) به منظور مدل سازی و پیش بینی سری زمانی یونوسفر در دوره فعالیت های شدید خورشیدی به عنوان یک روش جدید ارائه شده است. با استفاده از مدل جدید مقدار محتوای الکترون کلی (TEC) مدل سازی شده و سپس تغییرات زمانی آن در دوره فعالیت های شدید خورشیدی و ژئومغناطیسی (سال 2017) پیش بینی می شود. برای بررسی کارائی روش مورد اشاره، از مشاهدات ایستگاه GPS تهران (N35/69 ، E51/33) که یکی از ایستگاه های شبکه جهانی IGS می باشد، استفاده شده است. مشاهدات سال های 2007 الی 2016 برای آموزش مدل مورد نظر به کار گرفته شده و سپس با مدل آموزش دیده، سری زمانی TEC در سال 2017 پیش بینی می شوند. نتایج حاصل از مدل جدید با نتایج حاصل از مدل شبکه عصبی رگرسیون عمومی (GRNN)، مدل تجربی NeQuick و خروجی شبکه جهانی IGS (GIM-TEC) مقایسه شده است. همچنین از شاخص های آماری ضریب همبستگی، خطای نسبی و جذر خطای مربعی میانگین (RMSE) به منظور بررسی دقت و صحت مدل ها استفاده می شود. مقدار RMSE به دست آمده برای مدل های LSTM، GRNN، GIM و NeQuick در مرحله تست سال 2017 به ترتیب برابر با 2/87، 4/51، 4/14 و 6/38 TECU می باشد. آنالیز مؤلفه های مختصاتی ایستگاه تهران با روش تعیین موقعیت نقطه ای دقیق (PPP) نشان می دهد که با استفاده از مدل جدید، بهبودی در حدود 5/19 الی 56/23 میلیمتر در مختصات ایستگاه نسبت به سایر مدل ها دیده می شود. نتایج حاصل از این تحقیق نشان می دهد که دقت و صحت مدل LSTM برای پیش بینی مقدار TEC در دوره فعالیت های شدید خورشیدی و ژئومغناطیسی، در مقایسه با مدل های GRNN، NeQuick و GIM بیشتر است.
۲.

تحلیل بی هنجاری های یونسفری در زمین لرزه ها با استفاده از شاخص میانگین و تبدیل فوریه زمان کوتاه(مقاله علمی وزارت علوم)

کلید واژه ها: یونوسفر TEC تبدیل فوریه زمان کوتاه پیش نشانگری زمین لرزه GPS

حوزه های تخصصی:
تعداد بازدید : ۷۷ تعداد دانلود : ۴۶
پدیده زمین لرزه هرساله در جهان و مخصوصاً کشور لرزه خیزی چون ایران، زیان های جانی و مالی هنگفتی به بار می آورد و پیش بینی زمین لرزه به یکی از چالش های بزرگ دانشمندان در دهه های اخیر تبدیل شده است. از جمله این پیش نشانگرها می توان به وقوع بی هنجاری در پارامترهای یونسفری قبل از زمین لرزه اشاره نمود. پارامتر مورد بررسی در این تحقیق محتوای الکترون کلی (TEC) است و مناطق مطالعاتی برای بررسی، زمین لرزه دوگانه اهر- ورزقان با بزرگای 6.5 و زمین لرزه سرپل ذهاب با بزرگای 6.3 است. در زمین لرزه اهر- ورزقان از مشاهدات شش ایستگاه GPS و در زمین لرزه سرپل ذهاب از مشاهدات پنج ایستگاه GPS شبکه جهانی IGS، به منظور محاسبه مقدار محتوای الکترون کلی (TEC) یونسفر استفاده شده است. تبدیل فوریه زمان کوتاه (STFT) و پارامترهای آماری میانگین و انحراف معیار برای کشف بی هنجاری های موجود در سری زمانی یونسفر به کار گرفته شده اند. همچنین تغییرات شاخص های ژئومغناطیسی  و آب و هوایی KP، Dst، F10.7، Vsw (سرعت پلاسما)، Ey (میدان مغناطیسی) و IMFBz (میدان مغناطیسی بین سیاره ای) برای اطلاع از شرایط روزهای قبل از وقوع زمین لرزه مورد بررسی و آنالیز قرار گرفته اند. نتایج نشان می دهد که برای زمین لرزه اهر- ورزقان، بی هنجاری هایی در11، 12، 13 و نیز 5 روز قبل از زمین لرزه وجود دارد. اما برای زمین لرزه سرپل ذهاب، در 6، 7، 13 و 21 روز قبل از زمین لرزه، بی هنجاری هایی قابل مشاهده است. آنالیزهای انجام گرفته در این مقاله نشان می دهد که در صورت بررسی کلیه پارامترهای ژئومغناطیسی و آب و هوائی قبل از وقوع زمین لرزه، می توان با آنالیز سری زمانی یونسفر با روش STFT، بی هنجاری های موجود را به صورت مستقیم مشاهده نمود. توجه به این نکته ضروری است که در روزهایی که شرایط ژئومغاطیسی و آب و هوایی آرامی حاکم نیست، نمی توان تنها وقوع زمین لرزه را علت بی هنجاری های کشف شده در سری زمانی یونسفر، دانست.
۳.

کاربرد شبکه عصبی موجک با الگوریتم آموزش بهینه سازی انبوه ذرات در مدل سازی تغییرات زمانی محتوای الکترون کلی یون سپهر(مقاله علمی وزارت علوم)

کلید واژه ها: TEC شبکه عصبی موجک الگوریتم GPS PSO

حوزه های تخصصی:
تعداد بازدید : ۳۸۰ تعداد دانلود : ۲۲۵
در این مقاله از ترکیب شبکه های عصبی موجک ( WNNs ) به همراه الگوریتم آموزش بهینه سازی انبوه ذرات ( PSO ) جهت مدل سازی تغییرات زمانی محتوای الکترون کلی ( TEC ) یون سپهر در منطقه ایران استفاده شده است. چهار ترکیب از تعداد مشاهدات ورودی مختلف جهت تست روش، مورد ارزیابی قرار گرفته است. تعداد مشاهدات ورودی انتخاب شده جهت آموزش شبکه عصبی موجک با الگوریتم PSO به ترتیب 25، 20، 15 و 10 ایستگاه از شبکه مبنای ژئودینامیک ایران ( IPGN ) می باشند. در هر چهار حالت تعداد پنج ایستگاه با توزیع مناسب در گستره جغرافیایی ایران به عنوان ایستگاه های آزمون در نظر گرفته شده اند. شاخص های آماری خطای نسبی، خطای مطلق و ضریب همبستگی جهت ارزیابی مدل شبکه عصبی موجک مورد استفاده قرار گرفته است. نتایج حاصل از مدل پیشنهادی این مقاله با TEC حاصل از مشاهدات GPS به عنوان مرجع اصلی و مدل جهانی یون سپهر 2016 ( IRI -2016 ) مقایسه شده است. میانگین خطای نسبی محاسبه شده در 5 ایستگاه آزمون برای شبکه عصبی موجک با 25 ایستگاه آموزش برابر با 43/13 % ، با 20 ایستگاه آموزش برابر با 73/13 % ، با 15 ایستگاه آموزش برابر با 05/15 % و با 10 ایستگاه آموزش برابر با 17/28 % تعیین شده است. همچنین میانگین مقادیر ضریب همبستگی محاسبه شده در پنج ایستگاه آزمون برای شبکه عصبی موجک با 25 ایستگاه آموزش برابر با 9768/0، با 20 ایستگاه آموزش برابر با 9545/0، با 15 ایستگاه آموزش برابر با 9376/0 و با 10 ایستگاه آموزش برابر با 7569/0 محاسبه شده است. نتایج این مقاله نشان می دهد که مدل شبکه عصبی موجک با الگوریتم آموزش PSO یک مدل قابل اعتماد جهت پیش بینی تغییرات زمانی یون سپهر در منطقه ایران است. این مدل می تواند یک جایگزین بسیار مطمئن برای مدل مرجع جهانی یون سپهر در ایران باشد.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان