شناسایی بهترین الگوریتم تشخیص گرد و غبار به کمک داده های مودیس(مقاله علمی وزارت علوم)
حوزه های تخصصی:
گرد و غبار یکی از رویدادهای جوی مناطق خشک و نیمه خشک جهان است که در سال های اخیر افزایش قابل توجه ای داشته و آثار و پیامدهای نامطلوبی را در بخش های مختلف بر جای گذاشته است. در این پژوهش از تصاویر سنجنده مودیس به منظور شناسایی و انتخاب بهترین الگوریتم تشخیص گرد و غبار استفاده شد. بدین منظور سه رویداد گرد و غبار جنوب غرب ایران در سال 2012 با استفاده از پنج الگوریتم مختلف شناسایی شامل BTD آکرمن، شاخص گرد و غبار، میلر، TIIDI و DUST RGB ، بارزسازی شدند و روش ها مورد مقایسه قرار گرفتند. بررسی های به عمل آمده نشان داد که روش های BTD آکرمن، شاخص گرد و غبار و میلر نیازمند تنظیم آستانه برای هر رویداد هستند؛ از این رو آستانه های مناسب برای هر رویداد با استفاده از روش هیستوگرام تعیین و ریزگردها شناسایی شدند. روش TIIDI نیز قابلیت تفکیک گرد و غبار از سایر پدیده ها را بر روی زمین داشت ولی نتوانست گرد و غبار روی آب را به خوبی بارزسازی کند. در روش DUST RGB به خوبی گرد و غبار از بقیه عوارض قابل تشخیص بود. همچنین نتایج طبقه بندی و ارزیابی صحت تصاویر نشان داد که در هر سه رویداد گرد و غبار، روش DUST RGB بالاترین صحت کلی را در میان سایر روش ها دارا می باشد. بنابراین بر اساس نتایج به دست آمده از ماتریس خطا و ارزیابی صحت، روش مذکور به عنوان بهترین الگوریتم شناسایی گرد و غبار انتخاب گردید.