میر رستم اسدالله زاده بالی
مطالب
فیلتر های جستجو:
فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
الگوسازی و پیش بینی درآمدهای مالیاتی در برنامه ی پنجم توسعه براساس ساختاری ویژه از شبکه های عصبی غیرخطی(مقاله علمی وزارت علوم)
منبع:
تحقیقات اقتصادی دوره ۴۶ پاییز ۱۳۹۰ شماره ۳ (پیاپی ۹۶)
45 - 63
کلید واژه ها: آشوب بعدهمبستگی پیش بینی شبکه ی عصبی مصنوعی مالیات مدل چندورودی- چندخروجی
حوزه های تخصصی:
در این مقاله ی، پیش بینی درآمدهای مالیاتی کشور طی سال های برنامه ی پنجم توسعه، یا به کارگیری روش شبکه های عصبی غیرخطی انجام شده است. این پیش بینی بر مبنای داده-های درآمدهای مالیاتی به تفکیک مالیات های کل، مستقیم، غیرمستقیم (سال های 87-1338)، شرکت ها، درآمد، ثروت و واردات (87-1342) بوده است.
از آن جا که پیش بینی ها مربوط به دوره ی میان مدت می باشد، شناخت نسبی از میزان پیچیدگی سری های زمانی موردنظر این امکان را فراهم می کند که با توجه به ساختار سری های زمانی، از مدل های مناسب برای پیش بینی و دستیابی به جواب های قابل اطمینان استفاده شود، لذا در این مقاله ابتدا ماهیت ساختاری سری زمانی درآمدهای مالیاتی از جهت آشوبی و تصادفی بودن و میزان پیچیدگی، با استفاده از آزمون بُعد همبستگی، بررسی شده است. نتایج تخمین بُعد همبستگی علاوه بر تأیید وجود آشوب در داده ها، نشانگر پیچیدگی در ساختار سری های زمانی موردنظر می باشد که میزان آن در مورد هر متغیر از جهت شدت و ضعف، متفاوت است. در مرحله ی بعد، درآمدهای مالیاتی به تفکیک منابع وصولی با استفاده از شبکه ی عصبی پیشنهادی وی ژه ی مؤلفان با ساختار چندورودی چندخروجی و قانون یادگیری پیشنهادی برای سال های 93-1388، به صورت یک بازه ی درآمدی پیش بینی شده است. نتایج به دست آمده از فرآیند پیش بینی شش سال آینده در فاز آموزش بسیار مطلوب بوده است و انتظار می رود در سال های آینده نیز مقادیر پیش بینی شده چنان چه تغییر ساختار ویژه ی مالیاتی رخ ندهد، با دقت خوبی برقرار باشد.
طبقه بندی G11, G1 :JEL