برای بررسی کارایی شبکه ی عصبی مصنوعی در شبیه سازی تغییرات سطح ایستابی سفره ی آب زیرزمینی دشت ملایر، از اطلاعات هواشناسی ایستگاه های تبخیرسنجی در سطح دشت، حجم آب برداشتی از سفره و مقادیر سطح ایستابی آن استفاده شد. از این اطلاعات، به عنوان ورودی شبکه ی عصبی مصنوعی نوع پرسپترون چندلایه در چارچوب چهار ساختار اطلاعاتی استفاده شد. ساختار اوّل، شامل میانگین اطلاعات دمای حدّاکثر هوا، دمای حدّاقل هوا، حدّاکثر رطوبت نسبی هوا، حدّاقل رطوبت نسبی هوا و میانگین تبخیر در مقیاس زمانی ماهانه و ارتفاع سطح ایستابی ماه پیش بود. در ساختار دوم از اطلاعات سطح ایستابی در یک، دو، سه و چهار ماه پیش استفاده شد. در ساختار سوم، افزون بر اطلاعات ساختار شماره ی دو، میانگین سطح ایستابی ماه مورد نظر و میانگین سطح ایستابی ماه پیش هم به کار گرفته شد. ساختار چهارم، براساس میانگین سطح ایستابی ماه مورد نظر، میانگین سطح ایستابی ماه پیش و اطلاعات هواشناسی ماهانه تعریف شد. ساختار سوم با آرایش 1-4-4-6، به عنوان ساختار مناسب با 9/1 درصد خطا در مقایسه با مقادیر واقعی پیشنهاد شد که نشان دهنده ی اهمّیّت به کارگیری عوامل سطح ایستابی سال های گذشته، در ورودی شبکه ی عصبی است. اجرای مدل بهینه ی شبکه ی عصبی، افت سطح ایستابی را 18/1 متر، به ازای 9/1 درصد خطا برآورد کرد. جذر میانگین مربّعات خطا در مدل بهینه ی شبکه ی عصبی با آرایش 1-4-4-6 بر مبنای قانون آموزش لونبرگ مارکوات و تابع محرک سیگموئید، در مقابل تغییرات واقعی سطح سفره 44/0 متر با ضریب تعیین 99/0 به دست آمد. با توجّه به دقّت مناسب مدل و روند کاهنده ی حاکم بر سفره، می توان استفاده از شبکه ی عصبی مصنوعی برای تصمیم گیری در مدیریت دشت را، به عنوان ابزاری با سرعت و دقّت مناسب در شبیه سازی سطح آب زیرزمینی دشت ملایر، توصیه کرد.