مطالب مرتبط با کلیدواژه

سرمای دیررس


۱.

پیش بینی سرما و یخبندان های دیررس بهارة حوضة زاب با استفاده از مدل پرسپترون چندلایه(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی زاب دمای حداقل سرمای دیررس شبکه های مصنوعی

حوزه های تخصصی:
تعداد بازدید : ۸۲۹ تعداد دانلود : ۴۰۱
هدف: هدف از این پژوهش، پیش بینی دماهای حداقل به عنوان یکی از عناصر مهم اقلیمی در پیش بینی سرمای دیررس بهاره و یخبندان است. روش: از شبکه های عصبی مصنوعی برای پیش بینی دماهای حداقل ایستگاه های پیرانشهر و سردشت استفاده شده است. بدین منظور، از دورة آماری 18 ساله (1391-1374) ایستگاه سینوپتیک پیرانشهر- سردشت و توابع و امکانات موجود در نرم افزار MATLAB برای آموزش و آزمون این مدل ها بهره گرفته شد. سپس، به بررسی شاخص های عملکرد شبکه، ازجمله ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مربعات خطا، میانگین مطلق خطا، درصد نسبی خطا و ضریب همبستگی پرداخته شد. یافته ها: علاوه بر تأیید توانایی شبکه های عصبی مصنوعی، یافته ها نشان داد که حداکثر خطای این مدل با داده های واقعی در ایستگاه های پیرانشهر و سردشت، به ترتیب 35/0 و 15/0 درجة سانتی گراد است که توانایی قابل توجه این مدل را در مدل سازی پیش بینی سرمای دیررس بهاره و یخبندان نشان می دهد. نتیجه گیری: استفاده از روش شبکه های عصبی مصنوعی در پیش بینی دماهای حداقل برای تعیین سرمای دیررس بهاره با توجه به تعیین خطای آموزشی، می تواند به عنوان گزینه ای سودمند موردتوجه و بررسی قرار گیرد.
۲.

پیش بینی سرمای دیررس بهاره با استفاده از شبکه ی عصبی پرسپترون چند لایه (MLP) و تاثیر آن در حمل و نقل شهر خرم آباد(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی شبکه عصبی مصنوعی سرمای دیررس شهرخرم آباد

حوزه های تخصصی:
تعداد بازدید : ۸۶ تعداد دانلود : ۸۶
سیستم حمل و نقل درون شهری به عنوان ابزار مهم و موتور محرک، توسعه ی شهرها در اقتصاد محلی و منطقه ای به شمار می آید. چرا که اگر جوامع شهری امروز دارای امکانات و زیرساخت های مناسب حمل و نقل شهری نباشند، خسارات جبران ناپذیر اقتصادی را بر خود تحمیل می نماید. در این راستا اقلیم شناسان تلاش می کنند با تجزیه و تحلیل داده های یک یا چند متغییر اقلیمی در گذشته، به قوانین و مدل هایی دست یابند که بر این اساس، وضعیت اقلیم را در آینده پیش بینی کنند. شبکه های عصبی مصنوعی از مؤلفه های هوش مصنوعی است که امروزه به طور وسیع در زمینه مدل سازی و پیش بینی پارامترهای اقلیمی مورد استفاده قرار می گیرد. در این پژوهش، سعی شده با پیش بینی سرمای دیررس بهاره ایستگاه خرم آباد با استفاده از مدل پرسپترون چند لایه (MLP) به تاثیر آن برسیستم حمل و نقل شهری، ضمن آشکارسازی رخداد وقوع، نسبت به کاهش خسارات و اختلالات ناشی از آن به خودروها و تاسیسات زیرساختی حمل و نقل درون شهری و غیره زمینه ای ایجاد نمود تا تدابیر لازم اتخاذ گردد. به منظور دستیابی به این مهم از متغیرهای میانگین ماهانه حداقل و حداکثر دما، میانگین حداقل و حداکثر رطوبت نسبی، مجموع ساعات آفتابی و میانگین مجموع بارش ماهانه طی دوره آماری 28 ساله (2009-1981) جهت پیش بینی دماهای حداقل ماه های آوریل و می سال های 2010 تا 2012 و مقایسه آن با داده های واقعی استفاده گردید. جهت این کار از امکانات و توابع موجود در نرم افزار MATLAB بهره گرفته شد. سپس به بررسی شاخص های عملکرد شبکه از جمله ضریب تعیین و همبستگی و درصد خطای نسبی پرداخته شد. یافته ها بیانگر وقوع یخ بندان بهاره برای 80% احتمال و دوره برگشت 49/1 ساله روز 187 یعنی 7 فروردین ماه است. و حداکثر خطای این مدل با داده های واقعی کم تر از 10/0 درجه سلسیوس است که توانایی قابل توجه مدل شبکه عصبی مصنوعی در مدلسازی پیش بینی دماهای حداقل را نشان می دهد. بنابراین توجه به پدیده های اقلیمی از جمله یخ بندان بر مدیریت و توسعه حمل و نقل شهری تاثیر شایانی می گذارد و باید از نظر کارشناسان این امر در الویت دقت قرار گیرد.