مدل سازی تبخیر روزانه در ایستگاه سد زاینده رود با استفاده از مدل های هوش مصنوعی و سری زمانی(مقاله علمی وزارت علوم)
حوزه های تخصصی:
تبخیر از تشت به عنوان یک پارامتر کاربردی در زمینه های مختلف، مانند برآورد هدر رفت آب از دریاچه ها و مخازن سدها و همچنین برآورد نیاز آبی گیاهان به ویژه در مناطقی که اطلاعات لایسیمتری وجود ندارد، کاربرد دارد. مدل سازی این پارامتر می تواند در زمینه بازسازی داده های گم شده و برنامه ریزی های درازمدت منابع آب و توسعه کشاورزی کارساز باشد. در این پژوهش با به کارگیری یک مدل هوش مصنوعی (برنامه ریزی بیان ژن) و دو مدل سری زمانی (فوریه و آریما)، تبخیر از تشت در ایستگاه سد زاینده رود در دوره زمانی 1344 تا 1396 (53 سال) مدل سازی شد. سری زمانی داده های تبخیر از تشت در مقیاس روزانه برای ماه های گرم سال (خرداد، تیر، مرداد، شهریور و مهر)، به عنوان ورودی مدل های فوریه و آریما و 4 الگوی مختلف شامل استفاده از داده های روزانه تبخیر 1 ماه قبل، 2 ماه قبل، 3 ماه قبل و 4 ماه قبل، به عنوان ورودی مدل برنامه ریزی بیان ژن استفاده شد. نتایج نشان داد که مدل برنامه ریزی بیان ژن تنها در ماه مهر نتایج قابل قبولی دارد و برای ماه های دیگر نتایج از نظر شاخص های آماری قابل قبول نمی باشد. میزان خطای برآود تبخیر روزانه در ماه مهر 38/0 میلی متر بر روز (معادل 7/2 درصد) بدست آمد. این میزان خطا بر اساس ضریب تبیین 84/0 و ضریب نش- ساتکلیف (ضریب کارایی مدل) 83/0، قابل قبول ارزیابی شد. بر خلاف مدل برنامه نویسی بیان ژن، مدل فوریه در تمام ماه های مورد مطالعه نتایج قابل قبول ارائه داد. مقادیر خطای برآورد تبخیر روزانه در این روش بین 02/1 تا 7/0 میلی متر بر روز به دست آمد که معادل 2/5 تا 8/8 درصد است. مقایسه نتایج دو مدل فوق با نتایج مدل آریما نیز نشان داد مقادیر خطای مدل آریما در تمام ماه ها بیشتر (4/9 تا 6/19 درصد) از مدل های فوریه و برنامه ریزی بیان ژن است. بنابراین بهترین مدل برای برآورد تبخیر روزانه از تشت، در ماه مهر مدل برنامه ریزی بیان ژن و در بقیه ماه ها مدل فوریه می باشد. ارزیابی دقت و توانایی برآورد داده های حدی تبخیر روزانه نیز نشان داد، مدل فوریه در تخمین داده های حدی، دارای توانایی بالاتری نسبت به دو مدل دیگر است. بنابراین می توان این مدل را جهت برآورد تبخیر روزانه در ایستگاه سد زاینده رود و همچنین بازسازی داده های گم شده توصیه نمود.