مطالب مرتبط با کلیدواژه

باندهای لبه قرمز


۱.

تفکیک محصولات زراعی با استفاده از ترکیب تصاویر سنتینل-1 و 2 در استان اردبیل(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تلفیق تصاویر اپتیک و رادار نقشه بندی محصولات زراعی باندهای لبه قرمز شاخص های پوشش گیاهی لبه قرمز یادگیری ماشین

حوزه های تخصصی:
تعداد بازدید : ۱۳۴ تعداد دانلود : ۵۶
سابقه و هدف: شناسایی و نقشه کردن محصولات زراعی اطلاعات مهمی برای مدیریت زمین های کشاورزی و برآورد سطح زیر کشت محصولات زراعی فراهم می کند. تصاویر اپتیک و راداری، منابع ارزشمندی برای طبقه بندی زمین های کشاورزی است. ویژگی های مستخرج از تصاویر اپتیک حاوی اطلاعاتی در مورد امضای بازتابی محصولات مختلف است. در مقابل، یک تصویر راداری فراهم کننده اطلاعاتی در مورد خصوصیات ساختاری و سازوکارهای پراکنش محصولات است. ترکیب این دو منبع قادر به ایجاد یک مجموعه داده مکمل با تعداد چشمگیری از ویژگی های زمانی طیفی، بافت و قطبیده برای طبقه بندی زمین های کشاورزی است. مواد و روش ها: این پژوهش به بررسی اهمیت باندهای لبه قرمز برای تفکیک محصولات زراعی شامل گندم، جو، یونجه، لوبیا، باقلا، کتان، ذرت، چغندر قند و سیب زمینی با استفاده از روش جنگل تصادفی و ماشین بردار پشتیبان می پردازد. بدین منظور سری زمانی تصاویر سنتینل-1 و 2 در سال 2019 از شمال غرب شهر اردبیل در پلتفرم ارت انجین فراخوانی شد. ترکیب های متفاوت باندها برای بررسی تأثیرات اطلاعات طیفی و زمانی، شاخص های گیاهی و اطلاعات بازپراکنش برای طبقه بندی محصولات بررسی شد. با استفاده از روش انتخاب ویژگی جنگل تصادفی ویژگی های مهم شناسایی و به عنوان ورودی الگوریتم جنگل تصادفی و ماشین بردار پشتیبان معرفی شدند. نتایج و بحث : جنگل تصادفی برای تمامی سناریوها بهترین نتیجه را به دست آورد. نتایج نشان داد افزودن طول موج های لبه قرمز و شاخص های مشتق شده از آن باعث شد محصولاتی همچون جو، لوبیا، باقلا و کتان نسبت به سایر محصولات با صحت بالاتری تفکیک شود. بهترین نتیجه در میان ترکیبات مختلف ویژگی ها مربوط به تلفیق سری زمانی ویژگی های طیفی تصاویر سنتینل-2 با سری زمانی تصاویر سنتینل-1 بود. صحت کلی 67/84 درصد و ضریب کاپا 31/ 82 درصد به دست آمد. نتایج نشان داد باندهای لبه قرمز و شاخص های پوشش گیاهی مبتنی بر آن به تنهایی قابلیت جداسازی محصولات زراعی را از همدیگر دارند. نتیجه گیری: پیشنهاد می شود برای دستیابی به صحت بالاتر در تفکیک محصولات زراعی انتخاب باندهای طیفی هدفمند مورد توجه قرار گیرد. ترکیبی از تصاویر راداری و اپتیک همیشه از روش طبقه بندی براساس تک سنجنده بهتر عمل می کند و به افزایش اطلاعات طبقه بندی منجر می شود.