مطالب مرتبط با کلیدواژه

ابر نقاط لیدار


۱.

ارائه رویکردی خودکار برای تشخیص نقاط پرت در ابر نقاط لیدار به کمک SVM-CRF و نمودار جعبه ای(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ابر نقاط لیدار تشخیص نقاط پرت SVM-CRF نمودار جعبه ای

حوزه های تخصصی:
تعداد بازدید : ۳۰۵ تعداد دانلود : ۱۶۳
مجموعه داده های ابر نقاط لیدار و مدل های سه بعدی ( 3-D ) در استخراج عوارض شهری، مدیریت جنگل داری، شهری و گردشگری، رباتیک، تولید بازی های رایانه ای و موارد دیگر کاربرد گسترده ای دارد. از سویی، وجود نقاط پرت در ابر نقاط لیدار اجتناب ناپذیر است؛ بنابراین تشخیص نقاط پرت و حذف آن از ابر نقاط لیدار به منزله گامی ضروری در پردازش ابر نقاط لیدار شناخته شده است. طی دهه های گذشته، چندین تکنیک تشخیص نقاط پرت در منابع این موضوع معرفی شده است اما بیشتر آنها از نظر زمانی هزینه برند و به نیروی متخصص انسانی نیاز دارند. به منظور کاهش این محدودیت ها، این مقاله رویکرد خودکار جدیدی برای تشخیص نقاط پرت، با استفاده از تکنیک میدان تصادفی شرطی برپایه ماشین بردار پشتیبان ( SVM-CRF ) و روش نمودار جعبه ای، معرفی کرده است. رویکرد نمودار جعبه ای بردار انرژی خروجی SVM-CRF را برای تشخیص نقاط پرت تجزیه و تحلیل می کند. این روش به کمک مجموعه داده محک ISPRS که برای مجموعه داده وهینگن، با هدف طبقه بندی سه بعدی و بازسازی سه بعدی ساختمان ایجاد شده بود، ارزیابی شد. به منظور ارزیابی این روش، ابتدا نقاط پرتی به صورت دستی به مجموعه داده افزوده شد؛ با این تمرکز که این نقاط جزء نقاط پرت چسبیده به اشیا باشند. سپس مراحل تحقیق برای ارزیابی توانایی روش پیشنهادی در تشخیص نقاط پرت انجام شد. نتایج این تحقیق عملکرد مدل پیشنهادی را با دقت کلی 62% نشان داد. اگرچه الگوریتم RANSAC عملکردی بهتر از مدل پیشنهادی دارد، تکنیک زمان بر و پرهزینه تری در مقایسه با تکنیک تشخیص نقاط پرت پیشنهادی است.