مطالب مرتبط با کلیدواژه

روش شبکه های عصبی MLP


۱.

بررسی ارتباط بین خشکسالی و کاهش کیفیت آب با استفاده از سنجش از دور و روش شبکه های عصبی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: خش کسالی کیفیت آب سنجش از دور روش شبکه های عصبی MLP

حوزه های تخصصی:
تعداد بازدید : ۲۹۴ تعداد دانلود : ۱۲۹
با توجه به تأثیر خشکسالی در کیفیت و کمّیت آب، هدف از این مطالعه بررسی خشکسالی با استفاده از شاخص های خشکسالی و ارتباط آن با میزان کیفیت آب در مناطق شمالی استان فارس ایران است. برای این منظور، شاخص های خشکسالی PCI، TVDI، NDVI در سال های 2000 تا 2020 استفاده شد. در ادامه، نقشه های پهنه بندی عناصر آب (Ca، Cl، EC، K، Na، Mg) با استفاده از روش کریجینگ تولید شد. سپس با به کارگیری روش شبکه های عصبی (MLP)، میزان عناصر آب با استفاده از شاخص های خشکسالی پیش بینی شد. نتایج نشان داد که با توجه به مقادیر شاخص های خشکسالی، روند تغییرات خشکسالی در منطقه از سال 2000 تا 2020 افزایشی بوده و بخش های جنوبی منطقه در وضعیت حادتری به نسبت دیگر بخش ها قرار دارد. نتایج حاصل از نقشه های پهنه بندی عناصر آب هم نشان داد که در بخش های جنوبی، غلظت املاح بیشتر از بخش های شمالی است. طبق نتایج حاصل از همبستگی بین شاخص های خشکسالی و مقادیر عناصر آب، Ca همبستگی بالایی (820/0 R=) با شاخص TVDI دارد و عناصر Cl، EC، K، Na، Mg نیز دارای همبستگی معنی داری (80/0 R>) با شاخص PCI است. نتایج حاصل از روش MLP، برای پیش بینی وضعیت کیفیت آب با استفاده از شاخص های خشکسالی، نشان داد که در مناطق جنوبی میزان املاح بیشتر و در نتیجه، کیفیت آب کمتر است. میزان دقت مدل در پیش بینی عناصر Cl، EC، K، Na، Mg، TH،TDS  با استفاده از شاخص PCI برابر با 85/0 R 2 = و درمورد عنصر Ca، با استفاده از شاخص TVDI برابر با 71/0 R 2 = است.