مطالب مرتبط با کلیدواژه

الگوریتم SMQT


۱.

ارائه یک روش جدید مبتنی بر الگوریتم SMQT به منظور بارزسازی تصاویر هوایی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: الگوریتم SMQT تصحیح گاما ادغام تصویر معیارشباهت ساختاری هیستوگرام

حوزه های تخصصی:
تعداد بازدید : ۳۳۸ تعداد دانلود : ۱۱۶
عدم تابش یکنواخت نور بر عوارض، سبب کاهش میزان کنتراست در تصاویر هوایی شده و استخراج ویژگی های تصویر را مشکل می سازد. عدم نوردهی مناسب باعث کاهش کنتراست تصویر و تشکیل سایه یک عارضه بر عوارض دیگر می شود، در نتیجه سبب از بین رفتن اطلاعاتی در مورد رفتار، شکل، اندازه ، الگو، بافت و تن عوارض شده و سبب فشردگی هیستوگرام تصویر در یک یا چند ناحیه خاص می شود. در این پژوهش از دو تصویر هوایی با تنوع عوارض پوشش گیاهی، خاک و دست ساخت بشر استفاده شد. در مرحله اول از روش پیشنهادی تحقیق حاضر، ابتدا الگوریتم SMQT بر تصویر اعمال گردید. این تبدیل با نشان دادن ساختار داده ها، ویژگی های Gain و Bias داده ها را حذف می کند. خروجی الگوریتم SMQT تصویر خاکستری می باشد. برای حفظ اطلاعات رنگی موجود در تصویر اصلی، تصویر RGB ورودی با تصویر حاصل از الگوریتم SMQT   ادغام گردید. در مرحله دوم، تصحیح گاما به میزان 0/7 به کل تصویر اعمال شد. تصحیح گاما، فرآیندی است که برای تصحیح پاسخ قانون توان رخ می دهد. میزان تصحیح گاما در همه قسمت های یک تصویر یکسان نیست اما  اعمال این تصحیح به صورت محلی و با استفاده از کرنل به ابعاد مشخص، سبب افزایش محاسبات و زمان می شود و در صورت وجود نویز در تصویر، انحراف شدید در میزان تصحیح به وجود می آورد. برای حل این مشکل، مجددا ً بر روی تصویر به دست آمده از تصحیح گاما، الگوریتم SMQT اعمال شد. این عمل با فشرده سازی محدوده ی داینامیک رنج به وسیله ی کشش هیستوگرام تصویر، در قسمت هایی از تصویر که نیاز به تصحیح گاما نداشت، ساختار داده را بدون تغییر باقی گذاشت. خروجی حاصل از الگوریتم SMQT در مرحله دوم با تصویر حاصل از تصحیح گاما، ادغام شد. معیار شباهت ساختاری برای تصاویر ورودی به ترتیب برابر 0/4352 و 0/4161 و برای تصاویر پردازش شده برابر 0/8372 و 0/8401 می  باشد.