مطالب مرتبط با کلیدواژه

داده راداری سنتینل 1


۱.

مدل سازی برآورد زیست توده چوبی روی زمینی جنگل های شاخه زاد بلوط زاگرس با استفاده از داده های راداری ماهواره سنتینل -1(مقاله علمی وزارت علوم)

کلیدواژه‌ها: زیست توده جنگل شاخه زاد بلوط زاگرس داده راداری سنتینل 1 الگوریتم ژنتیک K نزدیک ترین همسایه رگرسیون بردار پشتیبان

حوزه های تخصصی:
تعداد بازدید : ۲۴۷ تعداد دانلود : ۲۰۶
برآورد میزان زیست توده در توده های جنگلی با روش های سنجش از دوری اهمیت بسیاری دارد. هم زمان نبودن دریافت داده های ماهواره ای و اطلاعات میدانی و کاربرد معادلات آلومتریک جهانی، برای محاسبه وزن زیست توده درختان جنگلی داخل کشور، از مهم ترین دلایل عدم قطعیت در نتایج و تحلیل های حاصل از مطالعات مشابه قبلی به شمار می روند. به حداقل رساندن این مشکلات و بررسی قابلیت و عملکرد داده ها در توسعه مدل مناسب برآورد زیست توده جنگل، در منطقه بانکول بخش کارزان شهرستان سیروان، استان ایلام، با استفاده از داده های راداری ماهواره سنتینل 1، اخذشده در تاریخ 6 تیرماه 1396، هدف این تحقیق بود. اندازه قطر میانگین تاج پوشش درختان در 53 قطعه نمونه زمینی مربعی، مربوط به فرم رویشی شاخه زاد، به ابعاد 30×30 متر که در بازه زمانی 2 تا 20 خرداد 1396، به کمک دستگاه موقعیت یاب جهانی تفاضلی و به روش تعیین موقعیت کینماتیک آنی روی زمین اجرا و برداشت شدند، وارد روند برآورد زیست توده شد. میانگین زیست توده برداشت شده میدانی 10.63 تن درهکتار بود. پس از استخراج ویژگی های راداری، آن دسته از ویژگی ها که بیشترین میزان همبستگی را با مقادیر زیست توده داشتند انتخاب و از بین آنها، با به کارگیری الگوریتم ژنتیک و با استفاده از دو مدل رگرسیون K نزدیک ترین همسایه و رگرسیون بردار پشتیبان، مناسب ترین ترکیب ویژگی ها شناسایی و سپس، مقادیر زیست توده مدل سازی شد. اعتبارسنجی مدل ها با استفاده از 26 قطعه نمونه تست، انجام گرفت. همبستگی بین ویژگی های حاصل از داده های راداری و مقادیر زیست توده نشان داد که ویژگی های VH، Mean VV، Mean VV GLCM (Correlation) و Mean VH GLCM (Dissimilarity) بیشترین حساسیت را به مقادیر زیست توده داشتند. استفاده از مدل های رگرسیون نشان داد که روش رگرسیون بردار پشتیبان، با RMSE نسبی 0.08، از روش رگرسیون K نزدیک ترین همسایه، با RMSE نسبی 0.10، دقیق تر عمل کرده است. از بین ترکیب های ویژگی مورد بررسی نیز، بهترین ترکیب در حالت استفاده از رگرسیون K نزدیک ترین همسایه، دارای RMSE به میزان تقریبی 0.99 تن درهکتار (معادل10%) و ضریب تعیین 0.23 و در حالت استفاده از رگرسیون بردار پشتیبان، دارای RMSE به میزان 0.87 تن درهکتار (معادل 8%) و ضریب تعیین 0.14 بود. مدل های نهایی حاصل از ترکیب ویژگی های بهینه استخراج شده از داده راداری در طول موج باند C و روش های رگرسیونی پارامتری و غیرپارامتری مورد بررسی در این تحقیق به تنهایی قادر به بهبود اثر اشباع شدگی در داده، برای برآورد زیست توده در جنگل های مورد مطالعه، نبودند و منجر به پیشنهاد مدل برآوردکننده ای با صحت قابل قبول نشد.