مطالب مرتبط با کلیدواژه

تصویر فراطیفی


۱.

ارزیابی الگوریتم های PPI و SMACC در استخراج مس از تصاویر فراطیفی (مورد مطالعه: منطقه قزلداش خوی)

کلیدواژه‌ها: PPI SMACC تصویر فراطیفی MNF SAM

حوزه‌های تخصصی:
تعداد بازدید : ۳۴۷ تعداد دانلود : ۲۴۱
هدف از تحقیق حاضر،ارزیابی الگوریتم های اندیس خلوص پیکسلی(PPI) و حداکثر زاویه مخروط کوژ (SMACC) به منظور استخراج طیف کانی های مس منطقه قزلداش با استفاده از تصویر فراطیفی سنجنده هایپریون سطح 1R می باشد. برای این کار پنجره ای از تصاویر سنجنده هایپریون، منطقه قزل داش شهرستان خوی انتخاب گردید. در ادامه به منظور استخراج طیف های خالص مواد نسبت به اعمال پیش پردازش تصویر از جمله تصحیح رادیومتریک شامل حذف باند های نامناسب،خط های نواری حاوی نویز،حذف اثر طیفی و تصحیح اتمسفری به منظور تبدیل مقادیر تابش به انعکاس اقدام شد. سپس تبدیل MNF به منظور کاهش بعد تصویر و کاهش نویزها صورت گرفت. در مرحله بعد خالص ترین پیکسل ها با استفاده از پیاده سازی الگوریتم PPI و SMACC بروی تصاویر به دست آمده و توسط الگوریتم SAM پیکسل های خالص را طبقه بندی کردیم.در مرحله آخر با استفاده از نقاط کنترل زمینی صحت الگوریتم ها را در استخراج طیف کانی ها سنجیدیم که صحت کلی و ضریب کاپا برای الگوریتم PPI به ترتیب %74,12 و 0,61 و برای الگوریتم SMACC به ترتیب 69,23 و 0,57بود.همچنین فراوانی پیکسل های خالص مربوط به کانی ها در الگوریتم PPI بیشتر ازSMACC بود.
۲.

طبقه بندی مبتنی بر هدف با استفاده از قطعه بندی هرمی و الگوریتم ژنتیک وزن دار(مقاله پژوهشی دانشگاه آزاد)

نویسنده:

کلیدواژه‌ها: تصویر فراطیفی طبقه بندی مبتنی بر شی الگوریتم ژنتیک وزن دار انتخاب نشانه قطعه بندی هرمی

حوزه‌های تخصصی:
تعداد بازدید : ۴۲۱ تعداد دانلود : ۲۲۳
اخیرا، یک روش موثر برای طبقه بندی طیفی-مکانی با استفاده از قطعه بندی هرمی (HSEG) رشد یافته از نشانه های انتخاب شده ارائه شده است. هدف این مقاله بهبود این روش برای طبقه بندی تصاویر فراطیفی در مناطق شهری است. ابتدا الگوریتم ژنتیک وزن دار (WG) برای بدست آوردن باندهای بهینه داده های فراطیفی استفاده می شود. الگوریتم HSEG مبتنی بر نشانه سپس بر ویژگی های بدست آمده پیاده سازی می شوند. در ادامه، ویژگی های زمینه ای از تصاویر قطعه بندی شده استخراج می شوند. برای ویژگی های مکانی، ویژگی های مساحت، آنتروپی، شکل، مجاورت و رابطه به عنوان اجزای بالقوه در فضای ویژگی در نظر گرفته شده اند. سرانجام ، با استفاده از هر دو ویژگی طیفی و مکانی، اشیا تصویر توسط یک طبقه بندی کننده مبتنی بر قانون طبقه بندی می شوند. آزمون ها بر روی دو مجموعه داده اعمال شد: Berlin و Quebec City، که دو مجموعه داده شناخته شده و بنچ مارک در تصاویر فراطیفی هستند. ارزیابی نتایج نشان داد که روش پیشنهادی به ترتیب برای این مجموعه داده ها به ترتیب از 16٪ و 9٪ دقت کلی بهتری نسبت به الگوریتم HSEG اولیه به دست می آورد.
۳.

آشکارسازی ساختمان های با پوشش خاص در تصاویر فراطیفی با استفاده از الگوریتم هرمی مبتنی بر نشانه(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: تصویر فراطیفی آشکارسازی هدف الگوریتم هرمی مبتنی بر نشانه

حوزه‌های تخصصی:
تعداد بازدید : ۷۵ تعداد دانلود : ۷۶
فنّاوری سنجش ازدور فراطیفی، در دو دهه گذشته شاهد پیشرفت چشمگیری بوده است. یکی از تحلیل هایی که در خصوص تصاویر فراطیفی انجام می گیرد، آشکارسازی هدف است. در این پژوهش به آشکار سازی بام های دارای پوشش خاص به عنوان هدف، در یک محیط شهری پرداخته شده است. هم زمان با رشد شهرنشینی و توسعه مناطق شهری نیاز مدیران و برنامه ریزان به نقشه های بسیار دقیق از مناطق شهری به طور چشمگیری افزایش یافته است. ازآنجاکه یک محیط شهری دارای ویژگی های پیچیده ای از نظر فیزیکی، هندسی و عناصر به کارگرفته شده در ساختمان هاست، داده های فراطیفی کمک مؤثری به شناسایی، استخراج و تولید نقشه از عناصر سازنده یک محیط شهری می کنند. در خصوص آشکارسازی طیفی هدف، از دو دهه پیش تاکنون تحقیقات مستمر و متعددی صورت پذیرفته است. با توجه به مطالعات صورت گرفته، تاکنون، الگوریتم هرمی در مقایسه با سایر الگوریتم های استخراج اطلاعات مکانی در تصاویر فراطیفی به بهترین نتایج دست یافته است، ازاین رو در این پژوهش سعی می شود با ارائه روشی جدید و دقیق ساختمان های با پوشش خاص در تصاویر فراطیفی آشکارسازی شود.مواد و روش ها: برای انجام این پژوهش از داده های تصویری سنجنده CASI استفاده شده است. تصاویر مورد پردازش در این پژوهش شامل تصاویری با 32 باند طیفی و قدرت تفکیک 2 متر هستند که در تاریخ مه سال 2001 از منطقه شهری تولوز واقع در جنوب فرانسه برداشت شده است. در روش پیشنهادی ابتدا دو الگوریتم طبقه بندی شبکه عصبی پرسپترون چندلایه (MLP) و ماشین بردار پشتیبان (SVM) بر روی تصویر فراطیفی پیاده سازی شده، سپس از نقشه حاصل از ترکیب دو الگوریتم مذکور برای انتخاب نشانه برای الگوریتم قطعه بندی هرمی مبتنی بر نشانه استفاده می شود. در نهایت به کمک قانون تصمیم رأی اکثریت نقشه قطعه بندی هرمی مبتنی بر نشانه با نقشه حاصل از ادغام طبقه بندی های MLP و SVM ترکیب می شود.نتایج و بحث: در این پژوهش به منظور پیاده سازی الگوریتم SVM از کرنل پایه شعاعی گوسین استفاده شد. مقادیر دو پارامتر جریمه (C) و عرض تابع گوسی () در الگوریتم SVM به کمک روش ارزیابی متقاطع تعیین شد. الگوریتم طبقه بندی MLP با 3 لایه پنهان که شامل 5، 6 و 8 نورون هست پیاده سازی شد و ارزیابی آن با 500 تکرار انجام گرفت و برای انتخاب نشانه ها، آنالیز برچسب گذاری مؤلفه های متصل براساس 8 پیکسل همسایگی بر روی نقشه حاصل از ترکیب MLP و SVM صورت پذیرفت. براساس نتایج به دست آمده نقشه حاصل از روش پیشنهادی شامل مناطق یکنواخت تر و دارای ساختارهای به هم پیوسته بیشتری برای آشکارسازی ساختمان هاست که این اهمیت استفاده از اطلاعات مکانی در کنار اطلاعات طیفی را نشان می دهد. فنّاوری سنجش ازدور فراطیفی، در دو دهه گذشته شاهد پیشرفت چشمگیری بوده است. یکی از تحلیل هایی که در خصوص تصاویر فراطیفی انجام می گیرد، آشکارسازی هدف است. در این پژوهش به آشکار سازی بام های دارای پوشش خاص به عنوان هدف، در یک محیط شهری پرداخته شده است. هم زمان با رشد شهرنشینی و توسعه مناطق شهری نیاز مدیران و برنامه ریزان به نقشه های بسیار دقیق از مناطق شهری به طور چشمگیری افزایش یافته است. ازآنجاکه یک محیط شهری دارای ویژگی های پیچیده ای از نظر فیزیکی، هندسی و عناصر به کارگرفته شده در ساختمان هاست، داده های فراطیفی کمک مؤثری به شناسایی، استخراج و تولید نقشه از عناصر سازنده یک محیط شهری می کنند. در خصوص آشکارسازی طیفی هدف، از دو دهه پیش تاکنون تحقیقات مستمر و متعددی صورت پذیرفته است. با توجه به مطالعات صورت گرفته، تاکنون، الگوریتم هرمی در مقایسه با سایر الگوریتم های استخراج اطلاعات مکانی در تصاویر فراطیفی به بهترین نتایج دست یافته است، ازاین رو در این پژوهش سعی می شود با ارائه روشی جدید و دقیق ساختمان های با پوشش خاص در تصاویر فراطیفی آشکارسازی شود. مواد و روش ها: برای انجام این پژوهش از داده های تصویری سنجنده CASI استفاده شده است. تصاویر مورد پردازش در این پژوهش شامل تصاویری با 32 باند طیفی و قدرت تفکیک 2 متر هستند که در تاریخ مه سال 2001 از منطقه شهری تولوز واقع در جنوب فرانسه برداشت شده است. در روش پیشنهادی ابتدا دو الگوریتم طبقه بندی شبکه عصبی پرسپترون چندلایه (MLP) و ماشین بردار پشتیبان (SVM) بر روی تصویر فراطیفی پیاده سازی شده، سپس از نقشه حاصل از ترکیب دو الگوریتم مذکور برای انتخاب نشانه برای الگوریتم قطعه بندی هرمی مبتنی بر نشانه استفاده می شود. در نهایت به کمک قانون تصمیم رأی اکثریت نقشه قطعه بندی هرمی مبتنی بر نشانه با نقشه حاصل از ادغام طبقه بندی های MLP و SVM ترکیب می شود. نتایج و بحث: در این پژوهش به منظور پیاده سازی الگوریتم SVM از کرنل پایه شعاعی گوسین استفاده شد. مقادیر دو پارامتر جریمه (C) و عرض تابع گوسی () در الگوریتم SVM به کمک روش ارزیابی متقاطع تعیین شد. الگوریتم طبقه بندی MLP با 3 لایه پنهان که شامل 5، 6 و 8 نورون هست پیاده سازی شد و ارزیابی آن با 500 تکرار انجام گرفت و برای انتخاب نشانه ها، آنالیز برچسب گذاری مؤلفه های متصل براساس 8 پیکسل همسایگی بر روی نقشه حاصل از ترکیب MLP و SVM صورت پذیرفت. براساس نتایج به دست آمده نقشه حاصل از روش پیشنهادی شامل مناطق یکنواخت تر و دارای ساختارهای به هم پیوسته بیشتری برای آشکارسازی ساختمان هاست که این اهمیت استفاده از اطلاعات مکانی در کنار اطلاعات طیفی را نشان می دهد. نتیجه گیری: در این پژوهش راهبرد استفاده از اطلاعات مکانی در کنار اطلاعات طیفی برای بهبود آشکارسازی هدف در آنالیز تصاویر فراطیفی بررسی شد. برای این منظور از الگوریتم طیفی– مکانی هرمی مبتنی بر نشانه که در فرایند طبقه بندی تصاویر استفاده می شود، برای آشکارسازی بام ساختمان ها استفاده شد. در روش پیشنهادی از دو نقشه طبقه بندی در انتخاب نشانه ها و قانون تصمیم رأی اکثریت در مورد الگوریتم قطعه بندی هرمی اولیه به کار گرفته شد. در ترکیب  نقشه های طبقه بندی MLP و SVM به منظور استفاده در انتخاب نشانه ها و قانون تصمیم رأی اکثریت از احتمال شرطی و انتخاب بالاترین احتمال تعلق هر پیکسل به یک کلاس استفاده می شود.