مطالب مرتبط با کلیدواژه

معیار تابع فاصله اقلیدسی


۱.

خوشه بندی مقالات علمی بر پایه الگوریتم k_means مطالعه موردی: پایگاه پژوهشگاه علوم و فناوری اطلاعات ایران(ایرانداک)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: متن کاوی خوشه بندی الگوریتم k_means معیار تابع فاصله اقلیدسی پایگاه ایران داک

حوزه های تخصصی:
تعداد بازدید : ۴۵۳ تعداد دانلود : ۳۳۵
با رشد روز افزون منابع و مقالات در سطح وب، بکارگیری روش هایی سریع و ارزان برای دسترسی به متون مورد نظر از میان مجموعه وسیع این مستندات، اهمیت بیشتری می یابد. برای رسیدن به این هدف، به کارگیری تکنیک های متن کاوی، گامی ارزشمند در جهت کشف دانش از مستندات متنی به شمار می رود. هدف اصلی این پژوهش خوشه بندی پایگاه پژوهشگاه علوم و فناوری اطلاعات ایران(ایرانداک) براساس فنون متن کاوی می باشد. تا مقالات موجود به چند خوشه تقسیم شوند بطوریکه مقالات خوشه های مختلف حداکثر تفاوت ممکن و مقالات موجود در هر خوشه بیشترین شباهت را با هم داشته باشند . مقالات حوزه های مرتبط با فن آوری اطلاعات انتخاب شدند. بدین منظور ابتدا تمام کلید واژه های حوزه های فن آوری اطلاعات بر اساس دفعات بسامد آنها در مقالات پایگاه انتخاب و سپس مقالات هر کلیدواژه از پایگاه ایران داک استخراج گردید. سپس با استفاده از نرم افزار notepad++ مجموعه داده موردنظر ایجاد گردید. در این پژوهش برای انجام خوشه بندی از الگوریتم k_means و از معیار تابع فاصله اقلیدسی [1] برای اندازه گیری تشابه خوشه ها استفاده گردید . سپس نتایج حاصل از خوشه بندی مورد تجزیه و تحلیل قرار گرفت تا میزان شباهت و الگوی مناسب میان مقالات کشف شد. الگوی مورد نظر نشان داد که بیشترین میزان مشابهت میان مقالات دو خوشه داده کاوی و شبکه عصبی با فاصله اقلیدسی 365/1 وجود دارد و کمترین میزان شباهت میان مقالات دو خوشه بهینه سازی و پردازش تصویر با فاصله 387/1 گزارش شده است. دانش حاصل از پژوهش، خوشه بندی مقالات مرتبط با بیشترین وکمترین میزان مشابهت با یکدیگر، یافتن الگوی جدید جهت دسترسی سریع و آسان به مقالات مشابه و کشف ارتباط پنهان میان موضوعات مختلف می باشند.این دانش به پژوهشگران کمک می کند تا بتوانند مقالات موضوعی مرتبط با تخصص خود و مشابه با موضوع مورد مطالعه را به نحوی مطلوب تر شناسایی کنند. [1] -Euclidean distance